Suppr超能文献

在溃疡性结肠炎患者中,转录组特征在人和鼠之间具有保守性,提示其可用于无监督的患者分层。

Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification.

机构信息

Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176, Stockholm, Sweden.

Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.

出版信息

Nat Commun. 2019 Jun 28;10(1):2892. doi: 10.1038/s41467-019-10769-x.

Abstract

Clinical manifestations and response to therapies in ulcerative colitis (UC) are heterogeneous, yet patient classification criteria for tailored therapies are currently lacking. Here, we present an unsupervised molecular classification of UC patients, concordant with response to therapy in independent retrospective cohorts. We show that classical clustering of UC patient tissue transcriptomic data sets does not identify clinically relevant profiles, likely due to associated covariates. To overcome this, we compare cross-sectional human data sets with a newly generated longitudinal transcriptome profile of murine DSS-induced colitis. We show that the majority of colitis risk-associated gene expression peaks during the inflammatory rather than the recovery phase. Moreover, we achieve UC patient clustering into two distinct transcriptomic profiles, differing in neutrophil-related gene activation. Notably, 87% of patients in UC1 cluster are unresponsive to two most widely used biological therapies. These results demonstrate that cross-species comparison enables stratification of patients undistinguishable by other molecular approaches.

摘要

溃疡性结肠炎(UC)的临床表现和治疗反应具有异质性,但目前缺乏针对个体化治疗的患者分类标准。在这里,我们提出了一种溃疡性结肠炎患者的无监督分子分类方法,与独立回顾性队列中的治疗反应一致。我们发现,UC 患者组织转录组数据集的经典聚类方法并不能识别出具有临床意义的特征,这可能是由于存在相关协变量。为了克服这一问题,我们将人类横断面数据集与新生成的小鼠 DSS 诱导结肠炎的纵向转录组图谱进行了比较。我们发现,大多数结肠炎相关基因的表达峰值出现在炎症期而不是恢复期。此外,我们成功地将 UC 患者聚类为两种不同的转录组特征,其差异在于中性粒细胞相关基因的激活。值得注意的是,UC1 聚类中的 87%的患者对两种最广泛使用的生物治疗方法没有反应。这些结果表明,跨物种比较可以对其他分子方法无法区分的患者进行分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4e7/6598981/f7a9a45b7757/41467_2019_10769_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验