Wang Duan-Chao, Yu Hou-Yong, Qi Dongming, Ramasamy Mohankandhasamy, Yao Juming, Tang Feng, Tam Kam Michael Chiu, Ni Qingqing
College of Materials and Textile , Zhejiang Sci-Tech University , Xiasha Higher Education Park Avenue 2 No. 928 , Hangzhou 310018 , China.
Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario N2L 3G1 , Canada.
ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24435-24446. doi: 10.1021/acsami.9b06527. Epub 2019 Jul 1.
Nature employs supramolecular self-assembly to organize many molecularly complex structures. Based on this, we now report for the first time the supramolecular self-assembly of 3D lightweight nanocellulose aerogels using carboxylated ginger cellulose nanofibers and polyaniline (PANI) in a green aqueous medium. A possible supramolecular self-assembly of the 3D conductive supramolecular aerogel (SA) was provided, which also possessed mechanical flexibility, shape recovery capabilities, and a porous networked microstructure to support the conductive PANI chains. The lightweight conductive SA with hierarchically porous 3D structures (porosity of 96.90%) exhibited a high conductivity of 0.372 mS/cm and a larger area-normalized capacitance () of 59.26 mF/cm, which is 20 times higher than other 3D chemically cross-linked nanocellulose aerogels, fast charge-discharge performance, and excellent capacitance retention. Combining the flexible SA solid electrolyte with low-cost nonwoven polypropylene and PVA/HSO yielded a high normalized capacitance () of 291.01 F/g without the use of adhesive that was typically required for flexible energy storage devices. Furthermore, the supramolecular conductive aerogel could be used as a universal sensitive sensor for toxic gas, field sobriety tests, and health monitoring devices by utilizing the electrode material in lightweight supercapacitor and wearable flexible devices.
自然界利用超分子自组装来构建许多分子结构复杂的体系。基于此,我们首次报道了在绿色水介质中,利用羧化姜纤维素纳米纤维和聚苯胺(PANI)实现三维轻质纳米纤维素气凝胶的超分子自组装。文中给出了一种三维导电超分子气凝胶(SA)可能的超分子自组装方式,该气凝胶还具备机械柔韧性、形状恢复能力以及多孔网络微观结构,以支撑导电聚苯胺链。具有分级多孔三维结构(孔隙率为96.90%)的轻质导电SA表现出0.372 mS/cm的高电导率以及59.26 mF/cm的更大面积归一化电容(),这比其他三维化学交联纳米纤维素气凝胶高出20倍,具备快速充放电性能和出色的电容保持率。将柔性SA固体电解质与低成本的非织造聚丙烯以及PVA/HSO相结合,在不使用柔性储能器件通常所需粘合剂的情况下,得到了291.01 F/g的高归一化电容()。此外,通过将轻质超级电容器和可穿戴柔性器件中的电极材料用于超分子导电气凝胶,可将其用作有毒气体通用敏感传感器、现场清醒度测试以及健康监测设备。