Othman Abdullah, Sultan Mohamed, Becker Richard, Alsefry Saleh, Alharbi Talal, Gebremichael Esayas, Alharbi Hassan, Abdelmohsen Karem
1Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 USA.
2Department of Environmental and Health Research, Umm Al-Qura University, Mecca, 21955 Saudi Arabia.
Surv Geophys. 2018;39(3):543-566. doi: 10.1007/s10712-017-9458-7. Epub 2018 Jan 20.
An integrated approach [field, Interferometric Synthetic Aperture Radar (InSAR), hydrogeology, geodesy, and spatial analysis] was adopted to identify the nature, intensity, and spatial distribution of deformational features (sinkholes, fissures, differential settling) reported over fossil aquifers in arid lands, their controlling factors, and possible remedies. The Lower Mega Aquifer System (area 2 × 10 km) in central and northern Arabia was used as a test site. Findings suggest that excessive groundwater extraction from the fossil aquifer is the main cause of deformation: (1) deformational features correlated spatially and/or temporally with increased agricultural development and groundwater extraction, and with a decline in water levels and groundwater storage (- 3.7 ± 0.6 km/year); (2) earthquake events (years 1985-2016; magnitude 1-5) are largely (65% of reported earthquakes) shallow (1-5 km) and increased from 1 event/year in the early 1980s (extraction 1 km/year), up to 13 events/year in the 1990s (average annual extraction > 6.4 km). Results indicate that faults played a role in localizing deformation given that deformational sites and InSAR-based high subsidence rates (- 4 to - 15 mm/year) were largely found within, but not outside of, NW-SE-trending grabens bound by the Kahf fault system. Findings from the analysis of Gravity Recovery and Climate Experiment solutions indicate that sustainable extraction could be attained if groundwater extraction was reduced by 3.5-4 km/year. This study provides replicable and cost-effective methodologies for optimum utilization of fossil aquifers and for minimizing deformation associated with their use.
采用了一种综合方法[实地调查、干涉合成孔径雷达(InSAR)、水文地质学、大地测量学和空间分析]来确定干旱地区化石含水层上报告的变形特征(塌陷坑、裂缝、差异沉降)的性质、强度和空间分布、其控制因素以及可能的补救措施。阿拉伯半岛中部和北部的下巨型含水层系统(面积2×10平方千米)被用作试验场地。研究结果表明,从化石含水层过度抽取地下水是变形的主要原因:(1)变形特征在空间和/或时间上与农业发展和地下水抽取的增加以及水位和地下蓄水的下降(-3.7±0.6千米/年)相关;(2)地震事件(1985 - 2016年;震级1 - 5级)大多(报告地震的65%)为浅源地震(1 - 5千米),且从20世纪80年代初的每年1次地震(抽取量1千米/年)增加到90年代的每年13次地震(年平均抽取量>6.4千米)。结果表明,断层在局部变形中起作用,因为变形地点和基于InSAR的高沉降率(-4至-15毫米/年)大多发现于由卡赫夫断层系统界定的西北 - 东南走向的地堑内,而非地堑外。重力恢复与气候实验解的分析结果表明,如果将地下水抽取量每年减少3.5 - 4千米,就可以实现可持续抽取。本研究提供了可复制且具有成本效益的方法,用于化石含水层的最佳利用以及将与其使用相关的变形降至最低。