Suppr超能文献

机器学习预测心血管风险。

Machine learning to predict cardiovascular risk.

机构信息

Clinical Medicine Department, Miguel Hernandez University, San Juan de Alicante, Spain.

Public Health Department, Stritch School of Medicine, Universidad Loyola Chicago, Maywood, IL, USA.

出版信息

Int J Clin Pract. 2019 Oct;73(10):e13389. doi: 10.1111/ijcp.13389. Epub 2019 Aug 4.

Abstract

AIMS

To analyse the predictive capacity of 15 machine learning methods for estimating cardiovascular risk in a cohort and to compare them with other risk scales.

METHODS

We calculated cardiovascular risk by means of 15 machine-learning methods and using the SCORE and REGICOR scales and in 38 527 patients in the Spanish ESCARVAL RISK cohort, with 5-year follow-up. We considered patients to be at high risk when the risk of a cardiovascular event was over 5% (according to SCORE and machine learning methods) or over 10% (using REGICOR). The area under the receiver operating curve (AUC) and the C-index were calculated, as well as the diagnostic accuracy rate, error rate, sensitivity, specificity, positive and negative predictive values, positive likelihood ratio, and number needed to treat to prevent a harmful outcome.

RESULTS

The method with the greatest predictive capacity was quadratic discriminant analysis, with an AUC of 0.7086, followed by Naive Bayes and neural networks, with AUCs of 0.7084 and 0.7042, respectively. REGICOR and SCORE ranked 11th and 12th, respectively, in predictive capacity, with AUCs of 0.63. Seven machine learning methods showed a 7% higher predictive capacity (AUC) as well as higher sensitivity and specificity than the REGICOR and SCORE scales.

CONCLUSIONS

Ten of the 15 machine learning methods tested have a better predictive capacity for cardiovascular events and better classification indicators than the SCORE and REGICOR risk assessment scales commonly used in clinical practice in Spain. Machine learning methods should be considered in the development of future cardiovascular risk scales.

摘要

目的

分析 15 种机器学习方法在队列中估计心血管风险的预测能力,并将其与其他风险量表进行比较。

方法

我们使用 15 种机器学习方法,以及 SCORE 和 REGICOR 量表,计算了西班牙 ESCARVAL RISK 队列中 38527 名患者的心血管风险,随访时间为 5 年。我们认为,如果心血管事件的风险超过 5%(根据 SCORE 和机器学习方法)或超过 10%(使用 REGICOR),则患者处于高风险状态。计算了受试者工作特征曲线下面积(AUC)和 C 指数,以及诊断准确率、错误率、敏感性、特异性、阳性和阴性预测值、阳性似然比和预防不良后果所需的治疗人数。

结果

预测能力最强的方法是二次判别分析,AUC 为 0.7086,其次是朴素贝叶斯和神经网络,AUC 分别为 0.7084 和 0.7042。REGICOR 和 SCORE 的预测能力分别排名第 11 和第 12,AUC 分别为 0.63。有 7 种机器学习方法的预测能力(AUC)比 REGICOR 和 SCORE 量表高 7%,敏感性和特异性也更高。

结论

在西班牙临床实践中常用的 REGICOR 和 SCORE 风险评估量表中,15 种测试的机器学习方法中有 10 种方法对心血管事件具有更好的预测能力和更好的分类指标。机器学习方法应在未来心血管风险量表的开发中得到考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验