Health Innovation Big Data Center, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, South Korea.
Institute of Neuroscience and Medicine - Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, 52425, Germany.
J Digit Imaging. 2020 Feb;33(1):262-272. doi: 10.1007/s10278-019-00222-2.
Multimodal magnetic resonance imaging (MRI) has emerged as a promising tool for diagnosing ischemic stroke and for determining treatment strategies in the acute phase. The detection and quantification of the penumbra and the infarct core regions aid the assessment of the potential risks and benefits of thrombolysis by providing information on salvageable tissue or ischemic lesion age. In this study, we proposed a fully automated and real-time algorithm to compute parameter maps of perfusion-weighted images (PWIs) and to identify an infarct core from diffusion-weighted images (DWIs). DWI and PWI were obtained using a 1.5 Tesla MRI scanner for 15 patients with acute ischemic stroke. Parameter maps of PWI were computed using restricted gamma-variate curve fitting and Fourier-based deconvolution. The ischemic penumbra was identified using time-to-maximum (T) > 6 s as the mutual optimal threshold, while the infarct core was segmented using an adaptive thresholding on DWI. When the penumbra on PWI was compared with that generated using commercial software Pearson's linear correlation coefficient between penumbra volumes was 0.601 (p = 0.030), and the Dice coefficient was 0.51 ± 0.15. The infarct core on DWI was compared with the manually segmented gold standard. Dice coefficient between the manually drawn and automated segmented infarct cores was 0.62 ± 0.18. The processing times for PWI and DWI were 222.9 ± 16.4 and 53.4 ± 4.8 s, respectively. In conclusion, we demonstrate a fully automated and real-time algorithm to segment the penumbra and the infarct core regions based on PWI and DWI.
多模态磁共振成像(MRI)已成为诊断缺血性中风和确定急性期治疗策略的有前途的工具。通过提供可挽救组织或缺血性病变年龄的信息,检测和量化半影区和梗死核心区有助于评估溶栓的潜在风险和益处。在这项研究中,我们提出了一种全自动实时算法,用于计算灌注加权图像(PWI)的参数图,并从弥散加权图像(DWI)中识别梗死核心。使用 1.5T MRI 扫描仪对 15 名急性缺血性中风患者进行 DWI 和 PWI 检查。使用受限伽马变量曲线拟合和基于傅里叶的反卷积方法计算 PWI 参数图。使用 Tmax>6s 作为互优阈值来识别缺血半影区,而使用 DWI 上的自适应阈值来分割梗死核心区。当将 PWI 上的半影区与商业软件生成的半影区进行比较时,半影区体积之间的 Pearson 线性相关系数为 0.601(p=0.030),Dice 系数为 0.51±0.15。将 DWI 上的梗死核心区与手动分割的金标准进行比较。手动绘制和自动分割梗死核心区之间的 Dice 系数为 0.62±0.18。PWI 和 DWI 的处理时间分别为 222.9±16.4s 和 53.4±4.8s。总之,我们展示了一种全自动实时算法,用于基于 PWI 和 DWI 分割半影区和梗死核心区。