Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada.
Am J Physiol Gastrointest Liver Physiol. 2019 Aug 1;317(2):G210-G221. doi: 10.1152/ajpgi.00252.2018. Epub 2019 Jul 3.
The enteric nervous system in the large intestine generates two important patterns relating to motility: ) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and ) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor -nitro-l-arginine also augmented the activity of neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related. Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.
()传播称为结肠移行性运动复合波(CMMC)的有节奏的平滑肌蠕动收缩,和()紧张性抑制,在此期间结肠平滑肌收缩受到抑制。这两种模式的精确神经生物学基础尚不清楚。使用表达遗传编码钙指示剂 GCaMP3 来监测活性的转基因动物或光遗传学效应器通道视紫红质(ChR2)来驱动特定肠神经元亚群的活性,我们提供了证据表明胆碱能和氮能神经元分别在介导 CMMC 和紧张性抑制中发挥重要作用。表达 GCaMP3 的氮能神经元(神经元一氧化氮合酶(nNOS)阳性神经元)在紧张性抑制期间的活动水平高于 CMMC 期间。这些发现一致表明,氮能神经元中 ChR2 的光遗传学激活抑制了正在进行的 CMMC。相反,表达 GCaMP3 的胆碱能神经元(胆碱乙酰转移酶(ChAT)阳性神经元)在 CMMC 期间其活性明显增加。用一氧化氮合酶抑制剂 -硝基-L-精氨酸处理也增强了神经元的活性,这表明在结肠运动的不同阶段,氮能和胆碱能肠神经元表现出相反的活动模式可能有关。将肠神经元丛的活性与胃肠道运动的不同阶段相关联受到测量特定神经元亚型活性的困难的限制。在这里,我们使用表达遗传编码钙指示剂或光遗传学效应器通道视紫红质-2 的小鼠,提供了令人信服的证据表明,胆碱能和氮能神经元分别在介导协调传播的蠕动收缩或紧张性抑制中发挥重要作用,分别在小鼠结肠中。