Lepadatu Serban
Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE, UK.
Sci Rep. 2019 Jul 3;9(1):9592. doi: 10.1038/s41598-019-46091-1.
It is well known that skyrmions can be driven using spin-orbit torques due to the spin-Hall effect. Here we show an additional contribution in multilayered stacks arises from vertical spin currents due to inter-layer diffusion of a spin accumulation generated at a skyrmion. This additional interfacial spin torque is similar in form to the in-plane spin transfer torque, but is significantly enhanced in ultra-thin films and acts in the opposite direction to the electron flow. The combination of this diffusive spin torque and the spin-orbit torque results in skyrmion motion which helps to explain the observation of small skyrmion Hall angles even with moderate magnetisation damping values. Further, the effect of material imperfections on threshold currents and skyrmion Hall angle is also investigated. Topographical surface roughness, as small as a single monolayer variation, is shown to be an important contributing factor in ultra-thin films, resulting in good agreement with experimental observations.
众所周知,由于自旋霍尔效应,斯格明子可以通过自旋轨道转矩来驱动。在此我们表明,在多层堆叠结构中,由于斯格明子处产生的自旋积累的层间扩散,垂直自旋电流会产生额外的贡献。这种额外的界面自旋转矩在形式上与面内自旋转移转矩相似,但在超薄薄膜中会显著增强,并且其作用方向与电子流方向相反。这种扩散自旋转矩和自旋轨道转矩的组合导致斯格明子运动,这有助于解释即使在中等磁化阻尼值下也能观察到小的斯格明子霍尔角。此外,还研究了材料缺陷对阈值电流和斯格明子霍尔角的影响。结果表明,小至单个单分子层变化的表面形貌粗糙度是超薄薄膜中的一个重要影响因素,这与实验观察结果吻合良好。