Bauman Nicholas P, Bylaska Eric J, Krishnamoorthy Sriram, Low Guang Hao, Wiebe Nathan, Granade Christopher E, Roetteler Martin, Troyer Matthias, Kowalski Karol
William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA.
Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA.
J Chem Phys. 2019 Jul 7;151(1):014107. doi: 10.1063/1.5094643.
In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC (DUCC) formalism, the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects-used to define the effective Hamiltonian-from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of CAS representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing. Given growing interest in quantum computing, we provide energies for H and Be systems obtained with the quantum phase estimator algorithm available in the Quantum Development Kit for the approximate DUCC Hamiltonians.
在本文中,我们讨论了最近引入的子系统嵌入子代数耦合簇(SES-CC)形式体系向酉耦合簇形式体系的扩展。类似于标准的单参考SES-CC形式体系,其酉耦合簇扩展允许人们在SES诱导的完全活性空间(CAS)有效哈密顿量中纳入动力学(活性空间之外)相关效应。与标准的单参考SES-CC理论不同,酉耦合簇方法产生的是有效哈密顿量的厄米形式。此外,对于双酉耦合簇(DUCC)形式体系,相应的CAS本征值问题提供了外部簇振幅的严格分离,这些外部簇振幅描述了用于定义有效哈密顿量的动力学相关效应,与那些对应于定义与整个系统能量相关的本征向量分量的内部(活性空间内)激发的振幅相分离。所提出的形式体系可被视为将多电子哈密顿量降阶为以特定选择的CAS表示的低能模型的一种有效方法。原则上,这种技术可以扩展到表示量子系统任意能量窗口的任何类型的CAS。低维有效哈密顿量的厄米特性使其成为几种全组态相互作用型本征解算器的理想目标。作为一个例子,我们还讨论了与复合酉耦合簇理论相对应的有效DUCC哈密顿量微扰展开的代数形式,并讨论了混合经典和量子计算的可能算法。鉴于对量子计算的兴趣日益浓厚,我们提供了使用量子开发工具包中可用的量子相位估计器算法针对近似DUCC哈密顿量获得的H和Be系统的能量。