Suppr超能文献

用混合量子主方程模拟凝聚相中的锥形交叉动力学。

Simulating conical intersection dynamics in the condensed phase with hybrid quantum master equations.

作者信息

Schile Addison J, Limmer David T

机构信息

Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.

出版信息

J Chem Phys. 2019 Jul 7;151(1):014106. doi: 10.1063/1.5106379.

Abstract

We present a framework for simulating relaxation dynamics through a conical intersection of an open quantum system that combines methods to approximate the motion of degrees of freedom with disparate time and energy scales. In the vicinity of a conical intersection, a few degrees of freedom render the nuclear dynamics nonadiabatic with respect to the electronic degrees of freedom. We treat these strongly coupled modes by evolving their wavepacket dynamics in the absence of additional coupling exactly. The remaining weakly coupled nuclear degrees of freedom are partitioned into modes that are fast relative to the nonadiabatic coupling and those that are slow. The fast degrees of freedom can be traced out and treated with second-order perturbation theory in the form of the time-convolutionless master equation. The slow degrees of freedom are assumed to be frozen over the ultrafast relaxation and treated as sources of static disorder. In this way, we adopt the recently developed frozen-mode extension to second-order quantum master equations. We benchmark this approach to numerically exact results in models of pyrazine internal conversion and rhodopsin photoisomerization. We use this framework to study the dependence of the quantum yield on the reorganization energy and the characteristic time scale of the bath in a two-mode model of photoisomerization. We find that the yield is monotonically increasing with reorganization energy for a Markovian bath but monotonically decreasing with reorganization energy for a non-Markovian bath. This reflects the subtle interplay between dissipation and decoherence in conical intersection dynamics in the condensed phase.

摘要

我们提出了一个用于模拟开放量子系统通过锥形交叉点的弛豫动力学的框架,该框架结合了多种方法来近似具有不同时间和能量尺度的自由度的运动。在锥形交叉点附近,少数自由度使得核动力学相对于电子自由度是非绝热的。我们通过精确地在不存在额外耦合的情况下演化它们的波包动力学来处理这些强耦合模式。其余弱耦合的核自由度被划分为相对于非绝热耦合而言快速的模式和慢速的模式。快速自由度可以被追踪并用时域卷积无的主方程形式的二阶微扰理论来处理。慢速自由度被假定在超快弛豫过程中被冻结,并被视为静态无序的来源。通过这种方式,我们采用了最近发展的二阶量子主方程的冻结模式扩展。我们将这种方法与吡嗪内转换和视紫红质光异构化模型中的数值精确结果进行基准测试。我们使用这个框架来研究在光异构化的双模模型中量子产率对重组能和浴的特征时间尺度的依赖性。我们发现,对于马尔可夫浴,产率随重组能单调增加,而对于非马尔可夫浴,产率随重组能单调降低。这反映了凝聚相中锥形交叉点动力学中耗散和退相干之间的微妙相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验