Suppr超能文献

ASTM F48 工业外骨骼和外穿式防护服的形成与标准。

ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits.

作者信息

Lowe Brian D, Billotte William G, Peterson Donald R

机构信息

National Institute for Occupational Safety and Health.

National Institute of Standards and Technology.

出版信息

IISE Trans Occup Ergon Hum Factors. 2019;7. doi: 10.1080/24725838.2019.1579769.

Abstract

This paper provides an overview of a new consensus standards committee for exoskeletons, ASTM International F48, and describes the organization and current activities of this committee. Lack of product standards and certifications have been described as barriers to adoption of exoskeleton technologies in industry practice. While exoskeletons are not considered a traditional form of personal protective equipment (PPE) they are similarly wearable, and much of the interest in their application in the industrial/workplace domain is motivated by injury prevention. ASTM F48 believes that standards and certifications for exoskeletons in their manufacture, deployment, and use would enhance their adoption in the workplace.

摘要

本文概述了一个新的外骨骼共识标准委员会——美国材料与试验协会国际组织F48,并描述了该委员会的组织架构和当前活动。缺乏产品标准和认证被认为是外骨骼技术在行业实践中应用的障碍。虽然外骨骼不被视为传统形式的个人防护装备(PPE),但它们同样可穿戴,并且其在工业/工作场所领域应用的许多兴趣都源于预防伤害。ASTM F48认为,外骨骼在制造、部署和使用方面的标准和认证将促进其在工作场所的应用。

相似文献

1
ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits.
IISE Trans Occup Ergon Hum Factors. 2019;7. doi: 10.1080/24725838.2019.1579769.
2
Industrial exoskeletons: Need for intervention effectiveness research.
Am J Ind Med. 2020 Mar;63(3):201-208. doi: 10.1002/ajim.23080. Epub 2019 Dec 11.
4
Manufacturing Industry Stakeholder Perspectives on Occupational Exoskeletons: Changes after a Brief Exposure to Exoskeletons.
IISE Trans Occup Ergon Hum Factors. 2023 Jul-Oct;11(3-4):71-80. doi: 10.1080/24725838.2023.2262480. Epub 2023 Oct 6.
5
6
A Completely Portable and Concealable, Lightweight Assistive Exosuit for Upper Limbs.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340106.
8
Development of an upper limb passive exosuit for the 2023 ASTM Exo Games.
Front Robot AI. 2024 Nov 27;11:1485177. doi: 10.3389/frobt.2024.1485177. eCollection 2024.
9
Exoskeleton Application to Military Manual Handling Tasks.
Hum Factors. 2022 May;64(3):527-554. doi: 10.1177/0018720820957467. Epub 2020 Nov 18.
10
Application of human-centered design principles to wearable exoskeletons: a systematic review.
Disabil Rehabil Assist Technol. 2025 May;20(4):767-788. doi: 10.1080/17483107.2024.2415433. Epub 2024 Oct 23.

引用本文的文献

2
Evaluating the advantages of passive exoskeletons and recommendations for design improvements.
J Rehabil Assist Technol Eng. 2024 Mar 21;11:20556683241239875. doi: 10.1177/20556683241239875. eCollection 2024 Jan-Dec.
3
Benchmarking commercially available soft and rigid passive back exoskeletons for an industrial workplace.
Wearable Technol. 2024 Feb 15;5:e6. doi: 10.1017/wtc.2024.2. eCollection 2024.
4
Gait variability of outdoor vs treadmill walking with bilateral robotic ankle exoskeletons under proportional myoelectric control.
PLoS One. 2023 Nov 13;18(11):e0294241. doi: 10.1371/journal.pone.0294241. eCollection 2023.
5
Re-defining wearable robots: a multidisciplinary approach towards a unified terminology.
J Neuroeng Rehabil. 2023 Nov 7;20(1):149. doi: 10.1186/s12984-023-01269-7.
6
Sensemaking, adaptation and agency in human-exoskeleton synchrony.
Front Robot AI. 2023 Oct 12;10:1207052. doi: 10.3389/frobt.2023.1207052. eCollection 2023.
7
Evaluation Methods and Measurement Challenges for Industrial Exoskeletons.
Sensors (Basel). 2023 Jun 15;23(12):5604. doi: 10.3390/s23125604.
8
Quality, productivity, and economic implications of exoskeletons for occupational use: A systematic review.
PLoS One. 2023 Jun 27;18(6):e0287742. doi: 10.1371/journal.pone.0287742. eCollection 2023.
10
Industrial exoskeletons from bench to field: Human-machine interface and user experience in occupational settings and tasks.
Front Public Health. 2022 Nov 21;10:1039680. doi: 10.3389/fpubh.2022.1039680. eCollection 2022.

本文引用的文献

1
Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study.
Arch Phys Med Rehabil. 2017 Jul;98(7):1300-1307. doi: 10.1016/j.apmr.2017.02.010. Epub 2017 Mar 16.
2
Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study.
Spinal Cord Ser Cases. 2016 Jan 7;2:15025. doi: 10.1038/scsandc.2015.25. eCollection 2016.
3
Exoskeletons for industrial application and their potential effects on physical work load.
Ergonomics. 2016 May;59(5):671-81. doi: 10.1080/00140139.2015.1081988. Epub 2015 Oct 7.
4
Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.
Top Spinal Cord Inj Rehabil. 2015 Spring;21(2):110-21. doi: 10.1310/sci2102-110. Epub 2015 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验