Suppr超能文献

用于热疗的 UCST 两亲嵌段共聚物纳米粒子的热响应性中,大分子工程、药物包封和稀释的关键作用。

The crucial role of macromolecular engineering, drug encapsulation and dilution on the thermoresponsiveness of UCST diblock copolymer nanoparticles used for hyperthermia.

机构信息

Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.

EA401, Matériaux et Santé, Univ. Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France.

出版信息

Eur J Pharm Biopharm. 2019 Sep;142:281-290. doi: 10.1016/j.ejpb.2019.07.001. Epub 2019 Jul 4.

Abstract

Poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)), an upper critical solution temperature (UCST)-type copolymer in water, was synthesized by reversible addition fragmentation chain transfer (RAFT) copolymerization and used as a macro-RAFT agent for the polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) to yield amphiphilic diblock P(AAm-co-AN)-b-POEGMA copolymer. A series of copolymers with different AN content was obtained allowing to finely tune the UCST behavior (cloud point (T) from 35 to 78 °C). Addition of the POEGMA block did not modify the T regardless its Mn but provided a lower critical solution temperature behavior at high temperature. Nanoparticles were then formulated by the nanoprecipitation technique revealing that copolymers with higher T yield smaller, better-defined nanoparticles. Eventually, doxorubicin (Dox) was encapsulated into nanoparticles made from the copolymer having a T close to mild hyperthermia (~43 °C). Surprisingly, Dox encapsulation increased T and gave smaller nanoparticles as opposed to their unloaded counterparts. The dilution of the suspension also led to a decrease of Tt-UCST. No obvious hyperthermia effect was observed on the cytotoxicity of Dox-loaded nanoparticles. Our study highlighted the influence of macromolecular engineering, drug encapsulation and nanoparticle dilution on UCST behavior, important features often overlooked despite their crucial impact in the development of thermosensitive nanoscale drug delivery systems.

摘要

聚丙烯酰胺-丙烯腈共聚物(P(AAm-co-AN))是一种在水中具有上临界溶解温度(UCST)型的共聚物,通过可逆加成-断裂链转移(RAFT)共聚合成,并用作聚乙二醇甲醚甲基丙烯酸酯(OEGMA)聚合的大分子 RAFT 试剂,得到两亲性嵌段共聚物 P(AAm-co-AN)-b-POEGMA。得到了一系列具有不同 AN 含量的共聚物,允许精细调整 UCST 行为(云点(T)从 35°C 到 78°C)。添加 POEGMA 嵌段不会改变 T,无论其 Mn 如何,但在高温下提供了更低的临界溶解温度行为。然后通过纳米沉淀技术制备了纳米粒子,结果表明具有较高 T 的共聚物可得到更小、更明确的纳米粒子。最后,将阿霉素(Dox)封装到具有接近温和热疗(~43°C)的 T 的共聚物制成的纳米粒子中。令人惊讶的是,与未负载的纳米粒子相比,Dox 的包封增加了 T,并得到了更小的纳米粒子。悬浮液的稀释也导致 Tt-UCST 的降低。在载药纳米粒子的细胞毒性方面,没有观察到明显的热疗效应。我们的研究强调了大分子工程、药物包封和纳米粒子稀释对 UCST 行为的影响,尽管它们对热敏纳米药物递送系统的发展具有至关重要的影响,但这些因素经常被忽视。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验