Suppr超能文献

神经元分泌网络的结构与动力学。

Architecture and Dynamics of the Neuronal Secretory Network.

机构信息

Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; email:

Institute for Psychiatry and Neurosciences of Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, 75014 Paris, France; email:

出版信息

Annu Rev Cell Dev Biol. 2019 Oct 6;35:543-566. doi: 10.1146/annurev-cellbio-100818-125418. Epub 2019 Jul 5.

Abstract

Regulated synthesis and movement of proteins between cellular organelles are central to diverse forms of biological adaptation and plasticity. In neurons, the repertoire of channel, receptor, and adhesion proteins displayed on the cell surface directly impacts cellular development, morphology, excitability, and synapse function. The immensity of the neuronal surface membrane and its division into distinct functional domains present a challenging landscape over which proteins must navigate to reach their appropriate functional domains. This problem becomes more complex considering that neuronal protein synthesis is continuously refined in space and time by neural activity. Here we review our current understanding of how integral membrane and secreted proteins important for neuronal function travel from their sites of synthesis to their functional destinations. We discuss how unique adaptations to the function and distribution of neuronal secretory organelles may facilitate local protein trafficking at remote sites in neuronal dendrites to support diverse forms of synaptic plasticity.

摘要

蛋白质在细胞细胞器之间的调控合成和运动是多种形式的生物适应性和可塑性的核心。在神经元中,表面展示的通道、受体和黏附蛋白的组合直接影响细胞的发育、形态、兴奋性和突触功能。神经元细胞膜的巨大表面积及其划分为不同的功能域,为蛋白质到达其适当的功能域提供了一个具有挑战性的环境。考虑到神经元蛋白质合成不断受到神经活动的时空细化,这个问题变得更加复杂。在这里,我们回顾了我们目前对对于神经元功能重要的膜内在蛋白和分泌蛋白如何从它们的合成部位运输到它们的功能目的地的理解。我们讨论了神经元分泌细胞器的功能和分布的独特适应性如何促进神经元树突中远程部位的局部蛋白质运输,以支持多种形式的突触可塑性。

相似文献

1
Architecture and Dynamics of the Neuronal Secretory Network.
Annu Rev Cell Dev Biol. 2019 Oct 6;35:543-566. doi: 10.1146/annurev-cellbio-100818-125418. Epub 2019 Jul 5.
2
Specialization of biosynthetic membrane trafficking for neuronal form and function.
Curr Opin Neurobiol. 2016 Aug;39:8-16. doi: 10.1016/j.conb.2016.03.004. Epub 2016 Mar 22.
3
Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging.
J Neurosci. 2003 Jul 16;23(15):6188-99. doi: 10.1523/JNEUROSCI.23-15-06188.2003.
4
Location matters: the endoplasmic reticulum and protein trafficking in dendrites.
Biol Res. 2011;44(1):17-23. doi: 10.4067/S0716-97602011000100004. Epub 2011 May 11.
7
zapERtrap: A light-regulated ER release system reveals unexpected neuronal trafficking pathways.
J Cell Biol. 2021 Sep 6;220(9). doi: 10.1083/jcb.202103186. Epub 2021 Jul 9.
8
Secretory trafficking in neuronal dendrites.
Nat Cell Biol. 2004 Jul;6(7):585-91. doi: 10.1038/ncb0704-585.
10
A Dendritic Golgi Satellite between ERGIC and Retromer.
Cell Rep. 2016 Jan 12;14(2):189-99. doi: 10.1016/j.celrep.2015.12.024. Epub 2015 Dec 31.

引用本文的文献

1
An integrated transcriptomic and proteomic map of the mouse hippocampus at synaptic resolution.
Nat Commun. 2025 Aug 26;16(1):7942. doi: 10.1038/s41467-025-63119-5.
3
Understanding brain calcification via N-terminal acetylation at the Golgi apparatus.
Brain. 2025 Sep 3;148(9):3085-3094. doi: 10.1093/brain/awaf175.
4
The neuronal Golgi in neural circuit formation and reorganization.
Front Neural Circuits. 2024 Dec 5;18:1504422. doi: 10.3389/fncir.2024.1504422. eCollection 2024.
5
Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons.
Neurosci Bull. 2024 Aug;40(8):1053-1075. doi: 10.1007/s12264-023-01174-y. Epub 2024 Jan 30.
6
Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly.
Science. 2023 Oct 13;382(6667):223-230. doi: 10.1126/science.adg1075. Epub 2023 Oct 12.
7
The Unfolded Protein Response: A Double-Edged Sword for Brain Health.
Antioxidants (Basel). 2023 Aug 21;12(8):1648. doi: 10.3390/antiox12081648.
8
The organization and function of the Golgi apparatus in dendrite development and neurological disorders.
Genes Dis. 2022 Dec 20;10(6):2425-2442. doi: 10.1016/j.gendis.2022.11.009. eCollection 2023 Nov.
9
A distinct Golgi-targeting mechanism of dGM130 in neurons.
Front Mol Neurosci. 2023 Jun 2;16:1206219. doi: 10.3389/fnmol.2023.1206219. eCollection 2023.
10
Regulation of cargo exocytosis by a Reps1-Ralbp1-RalA module.
Sci Adv. 2023 Feb 22;9(8):eade2540. doi: 10.1126/sciadv.ade2540.

本文引用的文献

1
Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites.
Nat Commun. 2019 Feb 4;10(1):568. doi: 10.1038/s41467-019-08478-6.
2
The Golgi architecture and cell sensing.
Biochem Soc Trans. 2018 Oct 19;46(5):1063-1072. doi: 10.1042/BST20180323. Epub 2018 Sep 20.
3
Single particle trajectories reveal active endoplasmic reticulum luminal flow.
Nat Cell Biol. 2018 Oct;20(10):1118-1125. doi: 10.1038/s41556-018-0192-2. Epub 2018 Sep 17.
4
Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system.
Histochem Cell Biol. 2018 Nov;150(5):407-430. doi: 10.1007/s00418-018-1717-2. Epub 2018 Sep 1.
5
Neuronal Activity and Intracellular Calcium Levels Regulate Intracellular Transport of Newly Synthesized AMPAR.
Cell Rep. 2018 Jul 24;24(4):1001-1012.e3. doi: 10.1016/j.celrep.2018.06.095.
6
Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts.
J Cell Biol. 2018 Jul 2;217(7):2531-2547. doi: 10.1083/jcb.201708096. Epub 2018 May 4.
7
New approaches for solving old problems in neuronal protein trafficking.
Mol Cell Neurosci. 2018 Sep;91:48-66. doi: 10.1016/j.mcn.2018.04.004. Epub 2018 Apr 10.
8
The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity.
Dev Neurobiol. 2018 Mar;78(3):181-208. doi: 10.1002/dneu.22560. Epub 2017 Nov 19.
10
RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo.
Neuron. 2017 Aug 16;95(4):852-868.e8. doi: 10.1016/j.neuron.2017.07.016. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验