National Engineering Research Center for Ophthalmology, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China; and.
Retina. 2020 Aug;40(8):1558-1564. doi: 10.1097/IAE.0000000000002621.
To investigate whether and to what extent central serous chorioretinopathy (CSC) depicted on color fundus photographs can be assessed using deep learning technology.
We collected a total of 2,504 fundus images acquired on different subjects. We verified the CSC status of these images using their corresponding optical coherence tomography images. A total of 1,329 images depicted CSC. These images were preprocessed and normalized. This resulting data set was randomly split into three parts in the ratio of 8:1:1, respectively, for training, validation, and testing purposes. We used the deep learning architecture termed Inception-V3 to train the classifier. We performed nonparametric receiver operating characteristic analyses to assess the capability of the developed algorithm to identify CSC. To study the inter-reader variability and compare the performance of the computerized scheme and human experts, we asked two ophthalmologists (i.e., Rater #1 and #2) to independently review the same testing data set in a blind manner. We assessed the performance difference between the computer algorithms and the two experts using the receiver operating characteristic curves and computed their pair-wise agreements using Cohen's Kappa coefficients.
The areas under the receiver operating characteristic curve for the computer, Rater #1, and Rater #2 were 0.934 (95% confidence interval = 0.905-0.963), 0.859 (95% confidence interval = 0.809-0.908), and 0.725 (95% confidence interval = 0.662-0.788). The Kappa coefficient between the two raters was 0.48 (P < 0.001), while the Kappa coefficients between the computer and the two raters were 0.59 (P < 0.001) and 0.33 (P < 0.05).
Our experiments showed that the computer algorithm based on deep learning can assess CSC depicted on color fundus photographs in a relatively reliable and consistent way.
探究基于深度学习技术能否以及在何种程度上评估彩照眼底图像中的中心性浆液性脉络膜视网膜病变(CSC)。
我们收集了总共 2504 张不同受试者的眼底图像。我们使用相应的光学相干断层扫描图像来验证这些图像的 CSC 状态。共有 1329 张图像显示 CSC。这些图像经过预处理和归一化。将所得数据集按 8:1:1 的比例随机分为三部分,分别用于训练、验证和测试。我们使用名为 Inception-V3 的深度学习架构来训练分类器。我们进行了非参数接收器操作特征分析,以评估开发算法识别 CSC 的能力。为了研究读者间的变异性,并比较计算机方案和人类专家的性能,我们要求两名眼科医生(即 Rater #1 和 #2)以盲法独立审查相同的测试数据集。我们使用接收器操作特征曲线评估计算机算法与两位专家之间的性能差异,并使用 Cohen 的 Kappa 系数计算它们之间的两两一致性。
计算机、Rater #1 和 Rater #2 的接收器操作特征曲线下面积分别为 0.934(95%置信区间=0.905-0.963)、0.859(95%置信区间=0.809-0.908)和 0.725(95%置信区间=0.662-0.788)。两位评估者之间的 Kappa 系数为 0.48(P <0.001),而计算机与两位评估者之间的 Kappa 系数分别为 0.59(P <0.001)和 0.33(P <0.05)。
我们的实验表明,基于深度学习的计算机算法可以以相对可靠和一致的方式评估彩照眼底图像中的 CSC。