Mohamed K G, Mohammadein S A
Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt.
Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.
Eur Biophys J. 2019 Sep;48(6):539-548. doi: 10.1007/s00249-019-01382-3. Epub 2019 Jul 9.
In the context of decompression sickness, this paper presents analytical formulae and explanations for growth of a gas bubble in blood and other tissues in an unsteady diffusion field with a source or a sink. The formulae are valid for variable (through decompression) and constant (concerning diving stops/at sea level) ambient pressure. Under a linear decompression regime for ambient pressure, the gas bubble growth is proportional to ascent rate, tissue diffusivity and initial tissue tension and inversely proportional to surface tension, initial ambient pressure and the strength of the source/sink parameter [Formula: see text] which gives the conditions for bubble growth. We find that the growth process is noticeably affected by changing k-values within a specified range, with no significant effect on the value of the bubble radius when k is outside this range. We discuss the effect of the presence of multiple bubbles, and of repetitive diving. Of the three available models for bubble growth, the predicted time to completion is longest in the model by Srinivasan et al. (J Appl Physiol 86:732-741, 1999), where the bubble grows in a steady diffusion field, but shortest in the model we describe for k-values closest to the boundaries of the interval [Formula: see text]. This is because our model considers the effect of the presence of a source, increasing the bubble growth rate and not taken into account in our previous (2010) model predicting an intermediate timeframe for bubble growth. We believe our new model provides a more accurate and widely applicable description of bubble growth in decompression sickness than previous versions.
在减压病的背景下,本文给出了在具有源或汇的非稳态扩散场中血液及其他组织中气泡生长的解析公式及解释。这些公式适用于可变的(通过减压过程)和恒定的(关于潜水停留/在海平面)环境压力。在环境压力的线性减压模式下,气泡生长与上升速率、组织扩散率和初始组织张力成正比,与表面张力、初始环境压力以及源/汇参数[公式:见原文]的强度成反比,该参数给出了气泡生长的条件。我们发现,在指定范围内改变k值会显著影响生长过程,而当k超出此范围时,对气泡半径的值没有显著影响。我们讨论了多个气泡的存在以及重复潜水的影响。在三种可用的气泡生长模型中,Srinivasan等人(《应用生理学杂志》86:732 - 741,1999)的模型预测完成时间最长,其中气泡在稳态扩散场中生长,但在我们描述的k值最接近区间[公式:见原文]边界的模型中最短。这是因为我们的模型考虑了源的存在的影响,提高了气泡生长速率,而在我们之前(2010年)预测气泡生长处于中间时间范围的模型中未考虑这一点。我们相信,与之前的版本相比,我们的新模型为减压病中气泡生长提供了更准确且更广泛适用的描述。