Suppr超能文献

小脑监督学习规则中的复杂尖峰簇和假阳性排斥。

Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule.

机构信息

Department of Neurobiology, University of Chicago, Chicago, IL, USA.

Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.

出版信息

J Physiol. 2019 Aug;597(16):4387-4406. doi: 10.1113/JP278502. Epub 2019 Jul 26.

Abstract

KEY POINTS

Spike doublets comprise ∼10% of in vivo complex spike events under spontaneous conditions and ∼20% (up to 50%) under evoked conditions. Under near-physiological slice conditions, single complex spikes do not induce parallel fibre long-term depression. Doublet stimulation is required to induce long-term depression with an optimal parallel-fibre to first-complex-spike timing interval of 150 ms.

ABSTRACT

The classic example of biological supervised learning occurs at cerebellar parallel fibre (PF) to Purkinje cell synapses, comprising the most abundant synapse in the mammalian brain. Long-term depression (LTD) at these synapses is driven by climbing fibres (CFs), which fire continuously about once per second and therefore generate potential false-positive events. We show that pairs of complex spikes are required to induce LTD. In vivo, sensory stimuli evoked complex-spike doublets with intervals ≤150 ms in up to 50% of events. Using realistic [Ca ] and [Mg ] concentrations in slices, we determined that complex-spike doublets delivered 100-150 ms after PF stimulus onset were required to trigger PF-LTD, which is consistent with the requirements for eyeblink conditioning. Inter-complex spike intervals of 50-150 ms provided optimal decoding. This stimulus pattern prolonged evoked spine calcium signals and promoted CaMKII activation. Doublet activity may provide a means for CF instructive signals to stand out from background firing.

摘要

要点

在自发条件下,棘双脉冲约占体内复杂棘波事件的 10%,在诱发条件下约占 20%(高达 50%)。在接近生理切片条件下,单个复杂棘波不会诱导平行纤维长时程抑制。需要双脉冲刺激才能诱导长时程抑制,最佳的平行纤维到第一个复杂棘波的时间间隔为 150 毫秒。

摘要

生物监督学习的经典范例发生在小脑平行纤维(PF)到浦肯野细胞突触,这是哺乳动物大脑中最丰富的突触。这些突触的长时程抑制(LTD)由 climbing fibres(CFs)驱动,CFs 连续约每秒一次放电,因此会产生潜在的假阳性事件。我们表明,双棘波脉冲对诱导 LTD 是必需的。在体内,感觉刺激诱发的复杂棘波双脉冲在高达 50%的事件中具有 ≤150 毫秒的间隔。在切片中使用现实的 [Ca] 和 [Mg] 浓度,我们确定需要在 PF 刺激开始后 100-150 毫秒时传递 PF-LTD,这与眨眼条件反射的要求一致。间隔为 50-150 毫秒的棘间间隔提供了最佳解码。这种刺激模式延长了诱发的棘突钙信号,并促进了 CaMKII 的激活。双脉冲活动可能为 CF 指导信号从背景放电中脱颖而出提供了一种手段。

相似文献

1
Complex spike clusters and false-positive rejection in a cerebellar supervised learning rule.
J Physiol. 2019 Aug;597(16):4387-4406. doi: 10.1113/JP278502. Epub 2019 Jul 26.
2
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
3
4
The making of a complex spike: ionic composition and plasticity.
Ann N Y Acad Sci. 2002 Dec;978:359-90. doi: 10.1111/j.1749-6632.2002.tb07581.x.
5
Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output.
J Neurophysiol. 2007 Apr;97(4):2590-604. doi: 10.1152/jn.00627.2006. Epub 2007 Jan 31.
6
The Origin of Physiological Local mGluR1 Supralinear Ca Signals in Cerebellar Purkinje Neurons.
J Neurosci. 2020 Feb 26;40(9):1795-1809. doi: 10.1523/JNEUROSCI.2406-19.2020. Epub 2020 Jan 22.
7
Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells.
J Neurosci. 2007 May 23;27(21):5559-70. doi: 10.1523/JNEUROSCI.5117-06.2007.
8
Synaptic plasticity and calcium signaling in Purkinje cells of the central cerebellar lobes of mormyrid fish.
J Neurosci. 2007 Dec 5;27(49):13499-512. doi: 10.1523/JNEUROSCI.2613-07.2007.
9
The secondary spikes of climbing fibre responses recorded from Purkinje cell somata in cat cerebellum.
J Physiol. 1986 Aug;377:207-24. doi: 10.1113/jphysiol.1986.sp016182.

引用本文的文献

1
Different Numbers of Conjunctive Stimuli Induce LTP or LTD in Mouse Cerebellar Purkinje Cell.
Cerebellum. 2024 Dec;23(6):2297-2307. doi: 10.1007/s12311-024-01726-6. Epub 2024 Aug 3.
3
Climbing fibers provide essential instructive signals for associative learning.
Nat Neurosci. 2024 May;27(5):940-951. doi: 10.1038/s41593-024-01594-7. Epub 2024 Apr 2.
4
Contiguity in perception: origins in cellular associative computations.
Trends Neurosci. 2024 Mar;47(3):170-180. doi: 10.1016/j.tins.2024.01.001. Epub 2024 Feb 2.
5
Overexpression of the autism candidate gene pathologically enhances olivo-cerebellar signaling in mice.
Front Cell Neurosci. 2023 Jul 20;17:1219270. doi: 10.3389/fncel.2023.1219270. eCollection 2023.
6
Climbing fiber multi-innervation of mouse Purkinje dendrites with arborization common to human.
Science. 2023 Jul 28;381(6656):420-427. doi: 10.1126/science.adi1024. Epub 2023 Jul 27.
7
Postsynaptic plasticity of Purkinje cells in mice is determined by molecular identity.
Commun Biol. 2022 Dec 3;5(1):1328. doi: 10.1038/s42003-022-04283-y.
8
Sensory Over-responsivity and Aberrant Plasticity in Cerebellar Cortex in a Mouse Model of Syndromic Autism.
Biol Psychiatry Glob Open Sci. 2021 Oct 1;2(4):450-459. doi: 10.1016/j.bpsgos.2021.09.004. eCollection 2022 Oct.
9
Long-term depression-inductive stimulation causes long-term potentiation in mouse Purkinje cells with a mutant thyroid hormone receptor.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2210645119. doi: 10.1073/pnas.2210645119. Epub 2022 Nov 2.
10
Role of cerebellar cortex in associative learning and memory in guinea pigs.
Open Life Sci. 2022 Sep 14;17(1):1208-1216. doi: 10.1515/biol-2022-0471. eCollection 2022.

本文引用的文献

1
Intrinsic Excitability Increase in Cerebellar Purkinje Cells after Delay Eye-Blink Conditioning in Mice.
J Neurosci. 2020 Mar 4;40(10):2038-2046. doi: 10.1523/JNEUROSCI.2259-19.2019. Epub 2020 Feb 3.
2
Ca Requirements for Long-Term Depression Are Frequency Sensitive in Purkinje Cells.
Front Mol Neurosci. 2018 Dec 4;11:438. doi: 10.3389/fnmol.2018.00438. eCollection 2018.
3
Cerebellar learning using perturbations.
Elife. 2018 Nov 12;7:e31599. doi: 10.7554/eLife.31599.
4
Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning.
Neuron. 2018 Sep 5;99(5):985-998.e6. doi: 10.1016/j.neuron.2018.07.034. Epub 2018 Aug 16.
5
Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum.
Neuron. 2018 Sep 5;99(5):999-1015.e6. doi: 10.1016/j.neuron.2018.07.024. Epub 2018 Aug 16.
6
Sensorimotor Integration and Amplification of Reflexive Whisking by Well-Timed Spiking in the Cerebellar Corticonuclear Circuit.
Neuron. 2018 Aug 8;99(3):564-575.e2. doi: 10.1016/j.neuron.2018.06.028. Epub 2018 Jul 12.
8
Conditioned climbing fiber responses in cerebellar cortex and nuclei.
Neurosci Lett. 2019 Jan 1;688:26-36. doi: 10.1016/j.neulet.2018.04.035. Epub 2018 Apr 22.
9
Toward a Neurocentric View of Learning.
Neuron. 2017 Jul 5;95(1):19-32. doi: 10.1016/j.neuron.2017.05.021.
10
Timing Rules for Synaptic Plasticity Matched to Behavioral Function.
Neuron. 2016 Dec 7;92(5):959-967. doi: 10.1016/j.neuron.2016.10.022. Epub 2016 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验