Suppr超能文献

基于深度三维卷积神经网络和集成学习的肺结节预测 CAD 系统。

A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.

机构信息

Center for Research on Leading Technology of Special Equipment, School of Mechanical & Electrical Engineering, Guangzhou University, Guangzhou, P.R. China.

School of Mechanical & Electrical Engineering, Guangzhou University, Guangzhou, P.R. China.

出版信息

PLoS One. 2019 Jul 12;14(7):e0219369. doi: 10.1371/journal.pone.0219369. eCollection 2019.

Abstract

BACKGROUND

Detection of pulmonary nodules is an important aspect of an automatic detection system. Incomputer-aided diagnosis (CAD) systems, the ability to detect pulmonary nodules is highly important, which plays an important role in the diagnosis and early treatment of lung cancer. Currently, the detection of pulmonary nodules depends mainly on doctor experience, which varies. This paper aims to address the challenge of pulmonary nodule detection more effectively.

METHODS

A method for detecting pulmonary nodules based on an improved neural network is presented in this paper. Nodules are clusters of tissue with a diameter of 3 mm to 30 mm in the pulmonary parenchyma. Because pulmonary nodules are similar to other lung structures and have a low density, false positive nodules often occur. Thus, our team proposed an improved convolutional neural network (CNN) framework to detect nodules. First, a nonsharpening mask is used to enhance the nodules in computed tomography (CT) images; then, CT images of 512×512 pixels are segmented into smaller images of 96×96 pixels. Second, in the 96×96 pixel images which contain or exclude pulmonary nodules, the plaques corresponding to positive and negative samples are segmented. Third, CT images segmented into 96×96 pixels are down-sampled to 64×64 and 32×32 size respectively. Fourth, an improved fusion neural network structure is constructed that consists of three three-dimensional convolutional neural networks, designated as CNN-1, CNN-2, and CNN-3, to detect false positive pulmonary nodules. The networks' input sizes are 32×32×32, 64×64×64, and 96×96×96 and include 5, 7, and 9 layers, respectively. Finally, we use the AdaBoost classifier to fuse the results of CNN-1, CNN-2, and CNN-3. We call this new neural network framework the Amalgamated-Convolutional Neural Network (A-CNN) and use it to detect pulmonary nodules.

FINDINGS

Our team trained A-CNN using the LUNA16 and Ali Tianchi datasets and evaluated its performance using the LUNA16 dataset. We discarded nodules less than 5mm in diameter. When the average number of false positives per scan was 0.125 and 0.25, the sensitivity of A-CNN reached as high as 81.7% and 85.1%, respectively.

摘要

背景

肺结节检测是自动检测系统的一个重要方面。在计算机辅助诊断(CAD)系统中,肺结节的检测能力非常重要,这对肺癌的诊断和早期治疗起着重要作用。目前,肺结节的检测主要依赖于医生的经验,而医生的经验各不相同。本文旨在更有效地解决肺结节检测的挑战。

方法

本文提出了一种基于改进神经网络的肺结节检测方法。结节是肺实质中直径为 3 毫米至 30 毫米的组织簇。由于肺结节与其他肺结构相似,且密度较低,因此经常出现假阳性结节。因此,我们的团队提出了一种改进的卷积神经网络(CNN)框架来检测结节。首先,使用非锐化掩模增强 CT 图像中的结节;然后,将 512×512 像素的 CT 图像分割成较小的 96×96 像素图像。其次,在包含或不包含肺结节的 96×96 像素图像中,分割出阳性和阴性样本对应的斑块。第三,将分割成 96×96 像素的 CT 图像分别下采样到 64×64 和 32×32 大小。第四,构建了一种改进的融合神经网络结构,由三个三维卷积神经网络(CNN-1、CNN-2 和 CNN-3)组成,用于检测假阳性肺结节。网络的输入大小分别为 32×32×32、64×64×64 和 96×96×96,分别包含 5、7 和 9 层。最后,我们使用 AdaBoost 分类器融合 CNN-1、CNN-2 和 CNN-3 的结果。我们称这个新的神经网络框架为融合卷积神经网络(A-CNN),并使用它来检测肺结节。

发现

我们的团队使用 LUNA16 和 Ali Tianchi 数据集训练 A-CNN,并使用 LUNA16 数据集评估其性能。我们排除了直径小于 5mm 的结节。当平均每扫描假阳性结节数为 0.125 和 0.25 时,A-CNN 的灵敏度分别高达 81.7%和 85.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1082/6625700/35fdfcd1561b/pone.0219369.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验