Gamboa Carolina, Godfrey Linda, Herrera Christian, Custodio Emilio, Soler Albert
Department of Geological Sciences, Universidad Católica del Norte (UCN), Antofagasta, Chile.
Earth & Planetary Sciences, Rutgers University, Piscataway, NJ, USA.
Sci Total Environ. 2019 Nov 10;690:329-351. doi: 10.1016/j.scitotenv.2019.06.356. Epub 2019 Jun 24.
The major ion and the multi-isotopic composition (Sr/Sr, δB, δS(SO) and δO(SO)) of groundwater from the Central Depression in northern Chile is investigated to identify the origin of groundwater solutes in the hyper-arid core of the Atacama Desert. The study area is between the Cordillera de Domeyko and the Central Depression, at latitudes 24-25°S, and is characterized by near-zero air moisture conditions, rare precipitation and very limited runoff. Groundwater composition varies from Ca-HCO to Ca, Na-SO type below elevations of 3400 m a.s.l. The rCl/rBr ratio of meteoric waters and groundwater overlap, but significantly increase in the aquifer as salinity goes up due to evapoconcentration far from the Domeyko Cordillera. The wind-displaced dust originating in the Central Depression (Sr/Sr: 0.706558-0.710645; δS(SO): 0 to +4‰) affects the precipitation composition in the highest parts of the Domeyko Cordillera (Sr/Sr: 0.706746-0.709511; δS(SO): +1 to +6‰), whose δS(SO) and δB values are greatly different from marine aerosols, discarding its contribution to dust at this distance inland. Sr and S isotopic values in groundwater indicate a strong relation with three main geological units: i) Paleozoic rocks contribute high radiogenic strontium isotope ratios to groundwater (0.707011-0.714862), while sulphate isotopic composition is probably acquired from atmospheric dust (>- 1.4‰), ii) Jurassic marine limestones contribute low-radiogenic strontium isotopic ratios to groundwater (<0.70784), while sulphate can be related to oxidized sulphides that change the isotopic signatures of sulphur (<-1.2‰), and iii) mixed salts in the Atacama Gravels contribute lower radiogenic strontium isotopic ratios and sulphate to groundwater (Sr/Sr: <0.707324; δS(SO): +0.1 to +7.7). These three processes reflect water-rock interactions. The δB of groundwater generally up to +13‰, does not increase along the regional groundwater flow path, discarding fractionation by interaction with clays. These results improve the understanding of the groundwater evolution in hyper-arid systems through a new conceptual model.
对智利北部中央凹陷区地下水的主要离子和多同位素组成(锶同位素比值、硼同位素δB、硫酸根硫同位素δS(SO)和氧同位素δO(SO))进行了研究,以确定阿塔卡马沙漠超干旱核心区地下水溶质的来源。研究区域位于多梅伊科山脉和中央凹陷之间,南纬24 - 25°,其特点是空气湿度接近零、降水稀少且径流非常有限。在海拔3400米以下,地下水成分从钙 - 重碳酸根型变化为钙、钠 - 硫酸根型。大气降水和地下水的rCl/rBr比值重叠,但由于远离多梅伊科山脉的蒸发浓缩作用,随着含水层盐度升高,该比值显著增加。源自中央凹陷的风成粉尘(锶同位素比值:0.706558 - 0.710645;硫酸根硫同位素δS(SO):0至 +4‰)影响多梅伊科山脉最高部分的降水组成(锶同位素比值:0.706746 - 0.709511;硫酸根硫同位素δS(SO):+1至 +6‰),其δS(SO)和δB值与海洋气溶胶有很大不同,排除了其对内陆这个距离处粉尘的贡献。地下水中的锶和硫同位素值表明与三个主要地质单元有很强的关系:i)古生代岩石为地下水贡献了高放射性锶同位素比值(0.707011 - 0.714862),而硫酸根同位素组成可能来自大气粉尘(> -1.4‰);ii)侏罗纪海相石灰岩为地下水贡献了低放射性锶同位素比值(<0.70784),而硫酸根可能与氧化硫化物有关,氧化硫化物改变了硫的同位素特征(< -1.2‰);iii)阿塔卡马砾石中的混合盐为地下水贡献了较低放射性锶同位素比值和硫酸根(锶同位素比值:<0.707324;硫酸根硫同位素δS(SO):+0.1至 +7.7)。这三个过程反映了水 - 岩相互作用。地下水的δB一般高达 +13‰,沿区域地下水流路径并未增加,排除了与粘土相互作用导致的分馏作用。这些结果通过一个新的概念模型增进了对超干旱系统中地下水演化的理解。