Suppr超能文献

通过整合人类癌症中的多组学数据鉴定由功能效应物桥接的癌症驱动长链非编码RNA

Identifying Cancer Driver lncRNAs Bridged by Functional Effectors through Integrating Multi-omics Data in Human Cancers.

作者信息

Zhang Yong, Liao Gaoming, Bai Jing, Zhang Xinxin, Xu Liwen, Deng Chunyu, Yan Min, Xie Aimin, Luo Tao, Long Zhilin, Xiao Yun, Li Xia

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China.

出版信息

Mol Ther Nucleic Acids. 2019 Sep 6;17:362-373. doi: 10.1016/j.omtn.2019.05.030. Epub 2019 Jun 13.

Abstract

The accumulation of somatic driver mutations in the human genome enables cells to gradually acquire a growth advantage and contributes to tumor development. Great efforts on protein-coding cancer drivers have yielded fruitful discoveries and clinical applications. However, investigations on cancer drivers in non-coding regions, especially long non-coding RNAs (lncRNAs), are extremely scarce due to the limitation of functional understanding. Thus, to identify driver lncRNAs integrating multi-omics data in human cancers, we proposed a computational framework, DriverLncNet, which dissected the functional impact of somatic copy number alteration (CNA) of lncRNAs on regulatory networks and captured key functional effectors in dys-regulatory networks. Applying it to 5 cancer types from The Cancer Genome Atlas (TCGA), we portrayed the landscape of 117 driver lncRNAs and revealed their associated cancer hallmarks through their functional effectors. Moreover, lncRNA RP11-571M6.8 was detected to be highly associated with immunotherapeutic targets (PD-1, PD-L1, and CTLA-4) and regulatory T cell infiltration level and their markers (IL2RA and FCGR2B) in glioblastoma multiforme, highlighting its immunosuppressive function. Meanwhile, a high expression of RP11-1020A11.1 in bladder carcinoma was predictive of poor survival independent of clinical characteristics, and CTD-2256P15.2 in lung adenocarcinoma responded to the sensitivity of methyl ethyl ketone (MEK) inhibitors. In summary, this study provided a framework to decipher the mechanisms of tumorigenesis from driver lncRNA level, established a new landscape of driver lncRNAs in human cancers, and offered potential clinical implications for precision oncology.

摘要

人类基因组中体细胞驱动突变的积累使细胞能够逐渐获得生长优势,并促进肿瘤发展。在蛋白质编码癌症驱动因子方面的巨大努力取得了丰硕的发现和临床应用成果。然而,由于功能理解的限制,对非编码区域,特别是长链非编码RNA(lncRNA)中的癌症驱动因子的研究极其匮乏。因此,为了在人类癌症中识别整合多组学数据的驱动lncRNA,我们提出了一个计算框架DriverLncNet,该框架剖析了lncRNA的体细胞拷贝数改变(CNA)对调控网络的功能影响,并捕获了失调网络中的关键功能效应物。将其应用于来自癌症基因组图谱(TCGA)的5种癌症类型,我们描绘了117个驱动lncRNA的图谱,并通过其功能效应物揭示了它们相关的癌症特征。此外,在多形性胶质母细胞瘤中,检测到lncRNA RP11-571M6.8与免疫治疗靶点(PD-1、PD-L1和CTLA-4)以及调节性T细胞浸润水平及其标志物(IL2RA和FCGR2B)高度相关,突出了其免疫抑制功能。同时,RP11-1020A11.1在膀胱癌中的高表达预示着独立于临床特征的不良生存,而CTD-2256P15.2在肺腺癌中对甲基乙基酮(MEK)抑制剂敏感。总之,本研究提供了一个从驱动lncRNA水平破译肿瘤发生机制的框架,建立了人类癌症中驱动lncRNA的新图谱,并为精准肿瘤学提供了潜在的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f3/6626872/d9e12c1092e3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验