Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Department of Radiology, Peking University First Hospital, Beijing, China.
Med Phys. 2019 Oct;46(10):4417-4430. doi: 10.1002/mp.13715. Epub 2019 Aug 16.
An automated accurate segmentation for dynamic contrast-enhanced magnetic resonance (DCE-MR) image sequences is essential for quantification of renal function. A self-supervised strategy is proposed for fully automatic segmentation of the renal DCE-MR images without using manually labeled data.
The proposed strategy employed both temporal and spatial information of the DCE-MR image sequences. First, the kidney area, the seed regions of the cortex, the medulla, and the pelvis were automatically detected in the spatial domain. Subsequently, all the pixels in the kidney were automatically labeled as the cortex, the medulla, or the pelvis based on their time-intensity signal and spatial position using a supervised classifier. The feasibility of the proposed strategy was verified on a dataset of renal DCE-MR images of 14 subjects without history of kidney diseases. Furthermore, the self-supervised strategy and the commonly used traditional unsupervised method were quantitatively compared with a reference manual segmentation by an experienced radiologist, using similarity indexes.
The average Dice coefficient (ADC) for the segmentations of the proposed self-supervised method is 0.92 using a ransom walker model as the classifier or 0.86 using a K-nearest neighbor model as the classifier. The ADC of the Kmeans-based unsupervised methods with three and six clusters were 0.65 and 0.79, respectively. The Dice coefficients of the self-supervised method were remarkably higher than that of the unsupervised method (one-tailed paired-sample t-test, P-values <10 ).
The results indicate that the proposed self-supervised approach yields a satisfactory similarity with the reference manual segmentation. Compared with the traditional unsupervised clustering method, the new strategy does not require manual intervention during the segmentation process and achieves better results for the segmentation of renal DCE-MR images.
动态对比增强磁共振(DCE-MR)图像序列的自动精确分割对于肾功能定量分析至关重要。本研究提出了一种无需使用手动标记数据的基于自我监督的策略,用于全自动分割肾脏 DCE-MR 图像。
该策略利用了 DCE-MR 图像序列的时间和空间信息。首先,在空间域中自动检测肾脏区域、皮质的种子区域、髓质和肾盂。然后,基于时间强度信号和空间位置,使用有监督分类器自动将肾脏中的所有像素标记为皮质、髓质或肾盂。该策略在没有肾脏疾病病史的 14 名受试者的肾脏 DCE-MR 图像数据集上进行了验证。此外,使用相似性指数对自我监督策略和常用的传统无监督方法与经验丰富的放射科医生的参考手动分割进行了定量比较。
使用 ransom walker 模型作为分类器的自我监督方法的平均骰子系数(ADC)为 0.92,使用 K-最近邻模型作为分类器的 ADC 为 0.86。具有三个和六个聚类的 Kmeans 无监督方法的 ADC 分别为 0.65 和 0.79。自我监督方法的 Dice 系数明显高于无监督方法(单侧配对样本 t 检验,P 值<10)。
结果表明,所提出的自我监督方法与参考手动分割具有较高的相似度。与传统的无监督聚类方法相比,该新策略在分割过程中不需要手动干预,并且可以实现更好的肾脏 DCE-MR 图像分割结果。