Rivera-Rivera Luis A, Wagner Albert F, Perry Jamin W
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
J Chem Phys. 2019 Jul 21;151(3):034303. doi: 10.1063/1.5099050.
In our previous work [Rivera-Rivera et al., J. Chem. Phys. 142, 014303 (2015)], classical molecular dynamics simulations followed the relaxation, in a 300 K Ar bath at a pressure of 10-400 atm, of nitromethane (CHNO) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. Both rotational and vibrational energies decayed with nonexponential curves. The present work explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes, while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. The saved CHNO positions and momenta were converted into mode-specific energies whose decay was monitored over 1000 ps. The results identify vibrational and rotational modes that promote/resist energy lost and drive nonexponential behavior.
在我们之前的工作[里韦拉 - 里韦拉等人,《化学物理杂志》142, 014303 (2015)]中,经典分子动力学模拟跟踪了在300 K、压力为10 - 400 atm的氩气浴中,通过在其所有内自由度间统计分布50千卡/摩尔而瞬间激发的硝基甲烷(CHNO)的弛豫过程。转动能和振动能均以非指数曲线衰减。本工作探究了衰减过程中起作用的特定模式机制。利用李和金[《化学物理杂志》107, 1394 (1997)]提出的转动与振动分离方法,可以表明振动动能仅分解为振动简正模式,而转动能和科里奥利能则分解为振动和转动简正模式。保存的CHNO位置和动量被转换为特定模式能量,并在1000皮秒内监测其衰减。结果确定了促进/阻止能量损失并导致非指数行为的振动和转动模式。