Suppr超能文献

基于最大均值差异的域自适应算法的图嵌入框架。

A Graph Embedding Framework for Maximum Mean Discrepancy-Based Domain Adaptation Algorithms.

出版信息

IEEE Trans Image Process. 2020;29:199-213. doi: 10.1109/TIP.2019.2928630. Epub 2019 Jul 19.

Abstract

Domain adaptation aims to deal with learning problems in which the labeled training data and unlabeled testing data are differently distributed. Maximum mean discrepancy (MMD), as a distribution distance measure, is minimized in various domain adaptation algorithms for eliminating domain divergence. We analyze empirical MMD from the point of view of graph embedding. It is discovered from the MMD intrinsic graph that, when the empirical MMD is minimized, the compactness within each domain and each class is simultaneously reduced. Therefore, points from different classes may mutually overlap, leading to unsatisfactory classification results. To deal with this issue, we present a graph embedding framework with intrinsic and penalty graphs for MMD-based domain adaptation algorithms. In the framework, we revise the intrinsic graph of MMD-based algorithms such that the within-class scatter is minimized, and thus, the new features are discriminative. Two strategies are proposed. Based on the strategies, we instantiate the framework by exploiting four models. Each model has a penalty graph characterizing certain similarity property that should be avoided. Comprehensive experiments on visual cross-domain benchmark datasets demonstrate that the proposed models can greatly enhance the classification performance compared with the state-of-the-art methods.

摘要

域自适应旨在解决学习问题,其中有标签的训练数据和无标签的测试数据分布不同。最大均值差异(MMD)作为一种分布距离度量,在各种域自适应算法中被最小化,以消除域分歧。我们从图嵌入的角度分析经验 MMD。从 MMD 内在图中发现,当经验 MMD 最小时,每个域和每个类内部的紧密度同时降低。因此,来自不同类别的点可能相互重叠,导致分类结果不理想。为了解决这个问题,我们提出了一个基于 MMD 的域自适应算法的内在和惩罚图的图嵌入框架。在这个框架中,我们修改了基于 MMD 的算法的内在图,使得类内散射最小化,从而使新特征具有辨别力。提出了两种策略。基于这些策略,我们通过利用四个模型来实例化该框架。每个模型都有一个惩罚图,其特征是应该避免的某种相似性。在视觉跨域基准数据集上的综合实验表明,与最先进的方法相比,所提出的模型可以大大提高分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验