Suppr超能文献

肠道微生物群影响小鼠的骨骼肌质量和功能。

The gut microbiota influences skeletal muscle mass and function in mice.

机构信息

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.

出版信息

Sci Transl Med. 2019 Jul 24;11(502). doi: 10.1126/scitranslmed.aan5662.

Abstract

The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes and Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice.

摘要

肠道微生物群与宿主之间的功能相互作用对宿主的生理机能、内稳态和持续健康非常重要。我们比较了缺乏肠道微生物群的无菌小鼠和具有肠道微生物群的无病原体小鼠的骨骼肌。与无病原体小鼠的骨骼肌相比,无菌小鼠的骨骼肌出现萎缩,胰岛素样生长因子 1 的表达减少,与骨骼肌生长和线粒体功能相关的基因转录减少。对无菌小鼠骨骼肌、肝脏和血清的核磁共振光谱分析显示,与无病原体小鼠相比,多种氨基酸(包括甘氨酸和丙氨酸)的含量发生了变化。无菌小鼠的血清胆碱(乙酰胆碱的前体)也减少,乙酰胆碱是肌肉和神经在神经肌肉接头之间传递信号的关键神经递质。与无病原体小鼠相比,无菌小鼠的骨骼肌中还观察到编码 Rapsyn 和 Lrp4 的基因表达减少,这两种蛋白对于神经肌肉接头的组装和功能很重要。将无病原体小鼠的肠道微生物群移植到无菌小鼠体内,导致骨骼肌质量增加,肌肉萎缩标志物减少,肌肉氧化代谢能力改善,神经肌肉接头组装基因的表达水平升高。用短链脂肪酸(微生物代谢物)治疗无菌小鼠部分逆转了骨骼肌损伤。我们的研究结果表明,肠道微生物群在调节小鼠的骨骼肌质量和功能方面发挥着作用。

相似文献

1
The gut microbiota influences skeletal muscle mass and function in mice.
Sci Transl Med. 2019 Jul 24;11(502). doi: 10.1126/scitranslmed.aan5662.
3
Gut microbiota depletion delays somatic peripheral nerve development and impairs neuromuscular junction maturation.
Gut Microbes. 2024 Jan-Dec;16(1):2363015. doi: 10.1080/19490976.2024.2363015. Epub 2024 Jun 7.
5
Gut bacteria are critical for optimal muscle function: a potential link with glucose homeostasis.
Am J Physiol Endocrinol Metab. 2019 Jul 1;317(1):E158-E171. doi: 10.1152/ajpendo.00521.2018. Epub 2019 Apr 30.
7
Microbiota protect against frailty and loss of skeletal muscle, and maintain inflammatory tone during aging in mice.
Am J Physiol Cell Physiol. 2025 Mar 1;328(3):C887-C894. doi: 10.1152/ajpcell.00869.2024. Epub 2025 Feb 10.
9
Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling.
Ann Med. 2021 Dec;53(1):508-522. doi: 10.1080/07853890.2021.1900593.

引用本文的文献

1
Metabolic and immune links between sarcopenia and liver disease.
World J Hepatol. 2025 Aug 27;17(8):109444. doi: 10.4254/wjh.v17.i8.109444.
2
An overview of basic pathophysiological interactions between gut bacteria and their host.
Front Nutr. 2025 Aug 12;12:1565609. doi: 10.3389/fnut.2025.1565609. eCollection 2025.
3
Rsearch progress on the relationship between aging and microbiota in sarcopenia.
Front Med (Lausanne). 2025 Aug 7;12:1549733. doi: 10.3389/fmed.2025.1549733. eCollection 2025.
4
Discovery of intestinal microorganisms that affect the improvement of muscle strength.
Sci Rep. 2025 Aug 18;15(1):30179. doi: 10.1038/s41598-025-15222-2.
5
Gut microbiota-mediated betaine regulates skeletal muscle fiber type transition by affecting mA RNA methylation and expression.
Gut Microbes. 2025 Dec;17(1):2545434. doi: 10.1080/19490976.2025.2545434. Epub 2025 Aug 18.
7
Advancements of physical exercise and intestinal microbiota and their potential mechanisms.
Front Microbiol. 2025 Jul 23;16:1595118. doi: 10.3389/fmicb.2025.1595118. eCollection 2025.
8
Molecular constraints of sarcopenia in the ageing muscle.
Front Aging. 2025 Jul 3;6:1588014. doi: 10.3389/fragi.2025.1588014. eCollection 2025.
9
Exploring the role of traditional Chinese medicine in sarcopenia: mechanisms and therapeutic advances.
Front Pharmacol. 2025 Jun 30;16:1541373. doi: 10.3389/fphar.2025.1541373. eCollection 2025.

本文引用的文献

1
Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism.
Int J Mol Sci. 2018 Aug 16;19(8):2418. doi: 10.3390/ijms19082418.
2
Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals.
J Cell Biol. 2017 Jul 3;216(7):2027-2045. doi: 10.1083/jcb.201702058. Epub 2017 May 31.
3
Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition.
Science. 2016 Feb 19;351(6275):854-7. doi: 10.1126/science.aad8588.
5
Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.
Physiol Rev. 2015 Jul;95(3):809-52. doi: 10.1152/physrev.00033.2014.
6
Microbiota controls the homeostasis of glial cells in the gut lamina propria.
Neuron. 2015 Jan 21;85(2):289-95. doi: 10.1016/j.neuron.2014.12.037. Epub 2015 Jan 8.
7
The gut microbiota influences blood-brain barrier permeability in mice.
Sci Transl Med. 2014 Nov 19;6(263):263ra158. doi: 10.1126/scitranslmed.3009759.
10
An overview of amines as nutritional supplements to counteract cancer cachexia.
J Cachexia Sarcopenia Muscle. 2014 Jun;5(2):105-10. doi: 10.1007/s13539-014-0138-x. Epub 2014 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验