Suppr超能文献

通过平行循环可变形性通道中的阻抗谱对细胞进行生物物理表型分析。

Biophysical phenotyping of cells via impedance spectroscopy in parallel cyclic deformability channels.

作者信息

Ren Xiang, Ghassemi Parham, Strobl Jeannine S, Agah Masoud

机构信息

The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.

出版信息

Biomicrofluidics. 2019 Jul 18;13(4):044103. doi: 10.1063/1.5099269. eCollection 2019 Jul.

Abstract

This paper describes a new microfluidic biosensor with capabilities of studying single cell biophysical properties. The chip contains four parallel sensing channels, where each channel includes two constriction regions separated by a relaxation region. All channels share a pair of electrodes to record the electrical impedance. Single cell impedance magnitudes and phases at different frequencies were obtained. The deformation and transition time information of cells passing through two sequential constriction regions were gained from the time points on impedance magnitude variations. Constriction channels separated by relaxation regions have been proven to improve the sensitivity of distinguishing single cells. The relaxation region between two sequential constriction channels provides extra time stamps that can be identified in the impedance plots. The new chip allows simultaneous measurement of the biophysical attributes of multiple cells in different channels, thereby increasing the overall throughput of the chip. Using the biomechanical parameters represented by the time stamps in the impedance results, breast cancer cells (MDA-MB-231) and the normal epithelial cells (MCF-10A) could be distinguished by 85%. The prediction accuracy at the single-cell level reached 97% when both biomechanical and bioelectrical parameters were utilized. While the new label-free assay has been tested to distinguish between normal and cancer cells, its application can be extended to include cell-drug interactions and circulating tumor cell detection in blood.

摘要

本文描述了一种具有研究单细胞生物物理特性能力的新型微流控生物传感器。该芯片包含四个平行的传感通道,每个通道包括两个由松弛区域隔开的收缩区域。所有通道共享一对电极来记录电阻抗。获得了不同频率下单细胞的阻抗幅值和相位。通过阻抗幅值变化的时间点获得了细胞通过两个连续收缩区域时的变形和过渡时间信息。已证明由松弛区域隔开的收缩通道可提高区分单细胞的灵敏度。两个连续收缩通道之间的松弛区域提供了额外的时间标记,可在阻抗图中识别。这种新型芯片允许同时测量不同通道中多个细胞的生物物理属性,从而提高芯片的整体通量。利用阻抗结果中时间标记所代表的生物力学参数,乳腺癌细胞(MDA-MB-231)和正常上皮细胞(MCF-10A)的区分准确率可达85%。当同时利用生物力学和生物电参数时,单细胞水平的预测准确率达到97%。虽然这种新型无标记检测方法已被测试用于区分正常细胞和癌细胞,但其应用可扩展到包括细胞-药物相互作用和血液中循环肿瘤细胞的检测。

相似文献

1
Biophysical phenotyping of cells via impedance spectroscopy in parallel cyclic deformability channels.
Biomicrofluidics. 2019 Jul 18;13(4):044103. doi: 10.1063/1.5099269. eCollection 2019 Jul.
2
Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
Biosens Bioelectron. 2019 May 15;133:16-23. doi: 10.1016/j.bios.2019.03.002. Epub 2019 Mar 7.
3
Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry.
Biosens Bioelectron. 2020 Feb 15;150:111868. doi: 10.1016/j.bios.2019.111868. Epub 2019 Nov 11.
4
High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes.
Biosens Bioelectron. 2020 Oct 15;166:112458. doi: 10.1016/j.bios.2020.112458. Epub 2020 Jul 17.
5
Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
Anal Chem. 2018 Jan 2;90(1):912-919. doi: 10.1021/acs.analchem.7b03859. Epub 2017 Dec 11.
6
Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry.
Small Methods. 2022 Jul;6(7):e2200325. doi: 10.1002/smtd.202200325. Epub 2022 May 20.
8
Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level.
Anal Chem. 2021 Mar 2;93(8):4108-4117. doi: 10.1021/acs.analchem.0c05352. Epub 2021 Feb 18.
9
Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry.
Anal Chem. 2020 Nov 3;92(21):14568-14575. doi: 10.1021/acs.analchem.0c02854. Epub 2020 Sep 23.
10
Single-Cell Mechanical Characteristics Analyzed by Multiconstriction Microfluidic Channels.
ACS Sens. 2017 Feb 24;2(2):290-299. doi: 10.1021/acssensors.6b00823. Epub 2017 Feb 10.

引用本文的文献

3
Transit Time Theory for a Droplet Passing through a Slit in Pressure-Driven Low Reynolds Number Flows.
Micromachines (Basel). 2023 Oct 31;14(11):2040. doi: 10.3390/mi14112040.
4
Electrical Characterization and Analysis of Single Cells and Related Applications.
Biosensors (Basel). 2023 Sep 26;13(10):907. doi: 10.3390/bios13100907.
7
Impedance Imaging of Cells and Tissues: Design and Applications.
BME Front. 2022 Jun 9;2022:1-21. doi: 10.34133/2022/9857485.
8
Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
Biosensors (Basel). 2021 Nov 22;11(11):470. doi: 10.3390/bios11110470.

本文引用的文献

1
Application of atomic force microscopy in cancer research.
J Nanobiotechnology. 2018 Dec 11;16(1):102. doi: 10.1186/s12951-018-0428-0.
2
Kernel-Based Microfluidic Constriction Assay for Tumor Sample Identification.
ACS Sens. 2018 Aug 24;3(8):1510-1521. doi: 10.1021/acssensors.8b00301. Epub 2018 Jul 18.
3
Multiparameter cell-tracking intrinsic cytometry for single-cell characterization.
Lab Chip. 2018 May 15;18(10):1430-1439. doi: 10.1039/c8lc00240a.
4
Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
Anal Chem. 2018 Jan 2;90(1):912-919. doi: 10.1021/acs.analchem.7b03859. Epub 2017 Dec 11.
5
Microfluidic Iterative Mechanical Characteristics (iMECH) Analyzer for Single-Cell Metastatic Identification.
Anal Methods. 2017 Feb 7;9(5):847-855. doi: 10.1039/C6AY03342C. Epub 2017 Jan 4.
6
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
7
Single-Cell Mechanical Characteristics Analyzed by Multiconstriction Microfluidic Channels.
ACS Sens. 2017 Feb 24;2(2):290-299. doi: 10.1021/acssensors.6b00823. Epub 2017 Feb 10.
8
Deformability-based cell selection with downstream immunofluorescence analysis.
Integr Biol (Camb). 2016 May 16;8(5):654-64. doi: 10.1039/c5ib00284b. Epub 2016 Mar 21.
9
Deformability of Tumor Cells versus Blood Cells.
Sci Rep. 2015 Dec 18;5:18542. doi: 10.1038/srep18542.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验