Hou Guozhi, Wang Zhaoye, Ma Haiguang, Ji Yang, Yu Linwei, Xu Jun, Chen Kunji
National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
Nanoscale. 2019 Aug 8;11(31):14777-14784. doi: 10.1039/c9nr05019a.
Plasmonic metal nanoparticles in conjunction with the cavity mode resonance in crystalline silicon (c-Si) nanopillars (NPs) can help achieve strongly enhanced broadband light absorption far beyond the limit of bulk c-Si. However, a major concern arises from the stability of metal nanoparticles, particularly at a high temperature, as the diffusion and conglomeration of the nanoparticles will undermine the very basis for the advantageous plasmonic effect. We here carried out a systematic investigation of the thermal stability of different metal nanoparticles coated on 3D Si-based NPs and found that simple Al2O3 encapsulation could help stabilize the gold (Au) particles coated on Si NPs even when subjected to annealing at >1073 K while accomplishing excellent broadband optical absorption (∼95%) from 200 nm to 2500 nm. This could be assigned mainly to the excellent dispersion retention capability of the Al2O3-encapsulated Au nanoparticles and the beneficial plasmon resonance absorption among the Au nanoparticles and Si NPs, as also revealed from the FDTD simulation analysis. Finally, a rapid vapor generation application was demonstrated based on the optimized Au/Si NPs, where salt water drops could be directly injected onto the high-temperature photo-heated Au/Si NPs and could vaporize/bounce off quickly without leaving any salt precipitation on the surface. This new strategy can also pave the way for high-performance Si-based photothermal applications.
等离子体金属纳米颗粒与晶体硅(c-Si)纳米柱(NPs)中的腔模共振相结合,有助于实现远超块状c-Si极限的强烈增强的宽带光吸收。然而,一个主要问题源于金属纳米颗粒的稳定性,特别是在高温下,因为纳米颗粒的扩散和团聚将破坏有利的等离子体效应的基础。我们在此对涂覆在三维硅基纳米颗粒上的不同金属纳米颗粒的热稳定性进行了系统研究,发现简单的Al2O3封装有助于稳定涂覆在Si纳米颗粒上的金(Au)颗粒,即使在高于1073 K的温度下退火时也是如此,同时在200 nm至2500 nm范围内实现优异的宽带光吸收(约95%)。这主要归因于Al2O3封装的Au纳米颗粒优异的分散保持能力以及Au纳米颗粒与Si纳米颗粒之间有益的等离子体共振吸收,这也从FDTD模拟分析中得到了证实。最后,基于优化的Au/Si纳米颗粒展示了一种快速蒸汽产生应用,其中盐水滴可以直接注入到高温光热加热的Au/Si纳米颗粒上,并可以快速蒸发/反弹,而不会在表面留下任何盐沉淀。这种新策略也可以为高性能硅基光热应用铺平道路。