Suppr超能文献

使用锁相回归模型提高可穿戴传感器用于人体运动跟踪的准确性。

Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.

作者信息

Duong Ton T H, Zhang Huanghe, Lynch T Sean, Zanotto Damiano

出版信息

IEEE Int Conf Rehabil Robot. 2019 Jun;2019:145-150. doi: 10.1109/ICORR.2019.8779428.

Abstract

The trend toward soft wearable robotic systems creates a compelling need for new and reliable sensor systems that do not require a rigid mounting frame. Despite the growing use of inertial measurement units (IMUs) in motion tracking applications, sensor drift and IMU-to-segment misalignment still represent major problems in applications requiring high accuracy. This paper proposes a novel 2-step calibration method which takes advantage of the periodic nature of human locomotion to improve the accuracy of wearable inertial sensors in measuring lower-limb joint angles. Specifically, the method was applied to the determination of the hip joint angles during walking tasks. The accuracy and precision of the calibration method were accessed in a group of N =8 subjects who walked with a custom-designed inertial motion capture system at 85% and 115% of their comfortable pace, using an optical motion capture system as reference. In light of its low computational complexity and good accuracy, the proposed approach shows promise for embedded applications, including closed-loop control of soft wearable robotic systems.

摘要

软可穿戴机器人系统的发展趋势迫切需要新型可靠的传感器系统,这类系统不需要刚性安装框架。尽管惯性测量单元(IMU)在运动跟踪应用中的使用日益广泛,但在需要高精度的应用中,传感器漂移和IMU与身体节段的不对准仍然是主要问题。本文提出了一种新颖的两步校准方法,该方法利用人体运动的周期性来提高可穿戴惯性传感器在测量下肢关节角度时的准确性。具体而言,该方法应用于步行任务中髋关节角度的测定。在一组N = 8名受试者中评估了校准方法的准确性和精确性,这些受试者以定制设计的惯性运动捕捉系统,在其舒适步速的85%和115%下行走,并使用光学运动捕捉系统作为参考。鉴于其低计算复杂度和良好的准确性,所提出的方法在嵌入式应用中显示出前景,包括软可穿戴机器人系统的闭环控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验