Suppr超能文献

过程层析成像中用于机器学习的逻辑回归

Logistic Regression for Machine Learning in Process Tomography.

作者信息

Rymarczyk Tomasz, Kozłowski Edward, Kłosowski Grzegorz, Niderla Konrad

机构信息

Research & Development Centre Netrix S.A., University of Economics and Innovation in Lublin, 20-209 Lublin, Poland.

Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland.

出版信息

Sensors (Basel). 2019 Aug 2;19(15):3400. doi: 10.3390/s19153400.

Abstract

The main goal of the research presented in this paper was to develop a refined machine learning algorithm for industrial tomography applications. The article presents algorithms based on logistic regression in relation to image reconstruction using electrical impedance tomography (EIT) and ultrasound transmission tomography (UST). The test object was a tank filled with water in which reconstructed objects were placed. For both EIT and UST, a novel approach was used in which each pixel of the output image was reconstructed by a separately trained prediction system. Therefore, it was necessary to use many predictive systems whose number corresponds to the number of pixels of the output image. Thanks to this approach the under-completed problem was changed to an over-completed one. To reduce the number of predictors in logistic regression by removing irrelevant and mutually correlated entries, the elastic net method was used. The developed algorithm that reconstructs images pixel-by-pixel is insensitive to the shape, number and position of the reconstructed objects. In order to assess the quality of mappings obtained thanks to the new algorithm, appropriate metrics were used: compatibility ratio (CR) and relative error (RE). The obtained results enabled the assessment of the usefulness of logistic regression in the reconstruction of EIT and UST images.

摘要

本文所呈现研究的主要目标是为工业断层扫描应用开发一种优化的机器学习算法。本文介绍了基于逻辑回归的算法,涉及使用电阻抗断层扫描(EIT)和超声透射断层扫描(UST)进行图像重建。测试对象是一个装满水的水箱,其中放置了待重建物体。对于EIT和UST,采用了一种新颖的方法,即通过单独训练的预测系统重建输出图像的每个像素。因此,有必要使用许多预测系统,其数量与输出图像的像素数量相对应。通过这种方法,欠完备问题转变为了过完备问题。为了通过去除不相关和相互关联的项来减少逻辑回归中的预测变量数量,使用了弹性网方法。所开发的逐像素重建图像的算法对重建物体的形状、数量和位置不敏感。为了评估借助新算法获得的映射质量,使用了适当的指标:兼容率(CR)和相对误差(RE)。所得结果使得能够评估逻辑回归在EIT和UST图像重建中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c23d/6696525/e99e9d53891c/sensors-19-03400-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验