Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
Department of Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA.
Biochim Biophys Acta Biomembr. 2019 Nov 1;1861(11):183035. doi: 10.1016/j.bbamem.2019.183035. Epub 2019 Aug 5.
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.
细菌细胞质膜的蛋白跨膜转运是由 Sec 转运体催化的基本过程,其最小形式由蛋白导通道 SecYEG 和马达 ATP 酶 SecA 组成。SecA 通过其带正电荷的 N 端与含有阴离子磷脂的膜结合,导致形成脂结合中间物。这种相互作用诱导 SecA 的构象变化,导致与 SecYEG 高亲和力结合,从而启动蛋白转运。在这里,我们更详细地研究了阴离子脂质对 SecA-SecYEG 相互作用的影响,并发现了第二个尚未知的阴离子脂质依赖性事件,该事件刺激蛋白转运。基于分子动力学模拟,我们在 SecY 的侧门附近鉴定出富含阴离子脂质的区域。在这里,阴离子脂质的头基可以进入侧门,从而稳定通道的预打开状态。模拟表明磷脂沿侧门的翻转运动。侧门处阴离子磷脂的静电贡献可能直接稳定进入前蛋白信号序列的带正电荷的残基。这种机制允许进入肽正确定位,从而为阴离子脂质在蛋白转运过程中信号序列折叠中的作用提供了长期以来寻求的解释。