Sandoval Luis, Perez Danny, Uberuaga Blas P, Voter Arthur F
Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Materials Science and Technology Division MST-8, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Materials (Basel). 2019 Aug 7;12(16):2500. doi: 10.3390/ma12162500.
One of the most critical challenges for the successful adoption of nuclear fusion power corresponds to plasma-facing materials. Due to its favorable properties in this context (low sputtering yield, high thermal conductivity, high melting point, among others), tungsten is a leading candidate material. Nevertheless, tungsten is affected by the plasma and fusion byproducts. Irradiation by helium nuclei, in particular, strongly modifies the surface structure by a synergy of processes, whose origin is the nucleation and growth of helium bubbles. In this review, we present recent advances in the understanding of helium effects in tungsten from a simulational approach based on accelerated molecular dynamics, which emphasizes the use of realistic parameters, as are expected in experimental and operational fusion power conditions.
成功采用核聚变能源面临的最关键挑战之一与面向等离子体的材料有关。由于钨在这方面具有良好的性能(低溅射产率、高导热性、高熔点等),它是主要的候选材料。然而,钨会受到等离子体和聚变副产物的影响。特别是氦核的辐照,通过多种过程的协同作用强烈改变表面结构,这些过程的根源是氦泡的成核和生长。在这篇综述中,我们基于加速分子动力学的模拟方法,介绍了在理解钨中氦效应方面的最新进展,该方法强调使用在实验和运行聚变能源条件下预期的实际参数。