Suppr超能文献

令人困惑的二氧化硅毒性问题:硅醇是否在表面状态和致病性之间架起了桥梁?

The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?

机构信息

UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium.

Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany.

出版信息

Part Fibre Toxicol. 2019 Aug 16;16(1):32. doi: 10.1186/s12989-019-0315-3.

Abstract

BACKGROUND

Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood.

MAIN BODY

Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified.

CONCLUSIONS

Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity.

摘要

背景

从地质学、物理学、化学、细胞生物学到颗粒毒理学,二氧化硅在各个科学领域仍然是基础和应用研究的一个有趣课题。二氧化硅的致病活性因颗粒的物理化学特性而异。在过去的 50 年中,结晶度和产生自由基的能力已被认为是二氧化硅毒性的相关特征。“表面”在二氧化硅毒性中也起着重要作用,但这个术语经常被非常笼统地使用,没有定义表面的哪些特性实际上是导致毒性的原因。二氧化硅表面的化学特性(例如硅烷醇和硅氧烷)和结构如何引发毒性反应仍不完全清楚。

正文

表面化学、细胞生物学和毒理学的最新发展为我们深入了解二氧化硅颗粒引起的不良反应的分子机制提供了新的途径。新的物理化学方法可以精细地表征和量化二氧化硅颗粒表面的硅烷醇。先进的计算建模和原子力显微镜为探索二氧化硅表面与膜模型或细胞之间的密切相互作用提供了独特的机会。近年来,使用这些工具的跨学科研究为表面硅烷醇是二氧化硅颗粒与生物分子、膜、细胞系统或动物模型相互作用的关键决定因素这一观点提供了越来越多的证据。硅烷醇的配置以及最终的生物反应也可以受到晶体结构内的杂质或覆盖颗粒表面的涂层的影响。在免疫系统和肺上皮细胞中发现了结晶和非结晶二氧化硅颗粒的新分子靶标,这代表了新的可能毒性途径。已经鉴定出细胞识别系统可以检测到二氧化硅颗粒表面的特定特征。

结论

将表面化学与毒理学联系起来的跨学科研究正在逐步解决二氧化硅毒性变化的难题。正在进行进一步的跨学科研究,以阐明二氧化硅致病的内在机制,可能减轻或降低表面反应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/6697921/031655f3133e/12989_2019_315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验