Suppr超能文献

视网膜缺血诱导 α-SMA 介导的毛细血管周细胞收缩,同时伴有血管周细胞糖原耗竭。

Retinal ischemia induces α-SMA-mediated capillary pericyte contraction coincident with perivascular glycogen depletion.

机构信息

Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.

Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada.

出版信息

Acta Neuropathol Commun. 2019 Aug 20;7(1):134. doi: 10.1186/s40478-019-0761-z.

Abstract

Increasing evidence indicates that pericytes are vulnerable cells, playing pathophysiological roles in various neurodegenerative processes. Microvascular pericytes contract during cerebral and coronary ischemia and do not relax after re-opening of the occluded artery, causing incomplete reperfusion. However, the cellular mechanisms underlying ischemia-induced pericyte contraction, its delayed emergence, and whether it is pharmacologically reversible are unclear. Here, we investigate i) whether ischemia-induced pericyte contractions are mediated by alpha-smooth muscle actin (α-SMA), ii) the sources of calcium rise in ischemic pericytes, and iii) if peri-microvascular glycogen can support pericyte metabolism during ischemia. Thus, we examined pericyte contractility in response to retinal ischemia both in vivo, using adaptive optics scanning light ophthalmoscopy and, ex vivo, using an unbiased stereological approach. We found that microvascular constrictions were associated with increased calcium in pericytes as detected by a genetically encoded calcium indicator (NG2-GCaMP6) or a fluoroprobe (Fluo-4). Knocking down α-SMA expression with RNA interference or fixing F-actin with phalloidin or calcium antagonist amlodipine prevented constrictions, suggesting that constrictions resulted from calcium- and α-SMA-mediated pericyte contractions. Carbenoxolone or a Cx43-selective peptide blocker also reduced calcium rise, consistent with involvement of gap junction-mediated mechanisms in addition to voltage-gated calcium channels. Pericyte calcium increase and capillary constrictions became significant after 1 h of ischemia and were coincident with depletion of peri-microvascular glycogen, suggesting that glucose derived from glycogen granules could support pericyte metabolism and delay ischemia-induced microvascular dysfunction. Indeed, capillary constrictions emerged earlier when glycogen breakdown was pharmacologically inhibited. Constrictions persisted despite recanalization but were reversible with pericyte-relaxant adenosine administered during recanalization. Our study demonstrates that retinal ischemia, a common cause of blindness, induces α-SMA- and calcium-mediated persistent pericyte contraction, which can be delayed by glucose driven from peri-microvascular glycogen. These findings clarify the contractile nature of capillary pericytes and identify a novel metabolic collaboration between peri-microvascular end-feet and pericytes.

摘要

越来越多的证据表明,周细胞是易损细胞,在各种神经退行性过程中发挥病理生理作用。脑和冠状动脉缺血时,微血管周细胞收缩,闭塞动脉再通后不舒张,导致不完全再灌注。然而,缺血诱导周细胞收缩的细胞机制、其延迟出现以及是否可通过药物逆转尚不清楚。在这里,我们研究了:i)缺血诱导的周细胞收缩是否由α-平滑肌肌动蛋白(α-SMA)介导;ii)缺血周细胞中钙升高的来源;iii)在缺血期间,周细胞周围的微小血管糖原是否可以支持周细胞代谢。因此,我们通过适应性光学扫描激光检眼镜在体内和使用无偏立体学方法在体外检查了视网膜缺血时周细胞的收缩性。我们发现,微血管收缩与通过基因编码钙指示剂(NG2-GCaMP6)或荧光探针(Fluo-4)检测到的周细胞内钙升高有关。用 RNA 干扰敲低 α-SMA 表达或用鬼笔环肽固定 F-肌动蛋白或钙拮抗剂氨氯地平可防止收缩,表明收缩是由钙和 α-SMA 介导的周细胞收缩引起的。用 carbenoxolone 或 Cx43 选择性肽阻滞剂也可降低钙升高,表明除电压门控钙通道外,缝隙连接介导的机制也参与其中。缺血 1 小时后,周细胞钙升高和毛细血管收缩变得显著,同时周细胞周围的微小血管糖原耗竭,提示来自糖原颗粒的葡萄糖可支持周细胞代谢并延迟缺血引起的微血管功能障碍。事实上,当用药理学方法抑制糖原分解时,毛细血管收缩更早出现。尽管再通后收缩仍然存在,但在再通期间给予周细胞松弛剂腺苷后,收缩是可逆转的。我们的研究表明,视网膜缺血是失明的常见原因,它会引起α-SMA 和钙介导的持续周细胞收缩,这种收缩可以通过来自周细胞周围微小血管末端的葡萄糖驱动来延迟。这些发现阐明了毛细血管周细胞的收缩性质,并确定了周细胞周围末端和周细胞之间的新型代谢协作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c561/6701129/38d7a3901c33/40478_2019_761_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验