Suppr超能文献

相似文献

1
Spatial Bayesian modeling of GLCM with application to malignant lesion characterization.
J Appl Stat. 2018;46(2):230-246. doi: 10.1080/02664763.2018.1473348. Epub 2018 May 15.
2
Wasserstein-based texture analysis in radiomic studies.
Comput Med Imaging Graph. 2022 Dec;102:102129. doi: 10.1016/j.compmedimag.2022.102129. Epub 2022 Oct 19.
3
A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas.
Neuroimage Clin. 2020;28:102437. doi: 10.1016/j.nicl.2020.102437. Epub 2020 Sep 18.
5
MM-GLCM-CNN: A multi-scale and multi-level based GLCM-CNN for polyp classification.
Comput Med Imaging Graph. 2023 Sep;108:102257. doi: 10.1016/j.compmedimag.2023.102257. Epub 2023 Jun 1.
7
MRI-aided kernel PET image reconstruction method based on texture features.
Phys Med Biol. 2021 Jul 26;66(15). doi: 10.1088/1361-6560/ac1024.
10
Quantitative evaluation of vocal-fold mucosal irregularities using GLCM-based texture analysis.
Laryngoscope. 2013 Nov;123(11):E45-50. doi: 10.1002/lary.24151. Epub 2013 May 17.

引用本文的文献

2
Deciphering cell to cell spatial relationship for pathology images using SpatialQPFs.
Sci Rep. 2024 Nov 28;14(1):29585. doi: 10.1038/s41598-024-81383-1.
7
Development and validation of a contrast-enhanced CT-based radiomics nomogram for preoperative diagnosis in neuroendocrine carcinoma of digestive system.
Front Endocrinol (Lausanne). 2023 Apr 12;14:1155307. doi: 10.3389/fendo.2023.1155307. eCollection 2023.
8
Prediction of single pulmonary nodule growth by CT radiomics and clinical features - a one-year follow-up study.
Front Oncol. 2022 Oct 28;12:1034817. doi: 10.3389/fonc.2022.1034817. eCollection 2022.
9
Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis.
Front Oncol. 2022 Sep 2;12:975183. doi: 10.3389/fonc.2022.975183. eCollection 2022.
10
Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study.
Diagnostics (Basel). 2022 Feb 24;12(3):578. doi: 10.3390/diagnostics12030578.

本文引用的文献

1
Bayesian Models for Detecting Difference Boundaries in Areal Data.
Stat Sin. 2015 Jan;25(1):385-402. doi: 10.5705/ss.2013.238w.
2
Utility of Intermediate-Delay Washout CT Images for Differentiation of Malignant and Benign Adrenal Lesions: A Multivariate Analysis.
AJR Am J Roentgenol. 2018 Aug;211(2):W109-W115. doi: 10.2214/AJR.17.19103. Epub 2018 Jun 27.
3
Differentiation of Malignant and Benign Adrenal Lesions With Delayed CT: Multivariate Analysis and Predictive Models.
AJR Am J Roentgenol. 2018 Apr;210(4):W156-W163. doi: 10.2214/AJR.17.18428. Epub 2018 Feb 7.
4
Combining Washout and Noncontrast Data From Adrenal Protocol CT: Improving Diagnostic Performance.
Acad Radiol. 2018 Jul;25(7):861-868. doi: 10.1016/j.acra.2017.12.005. Epub 2018 Feb 3.
5
Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer.
Sci Rep. 2018 Jan 31;8(1):1922. doi: 10.1038/s41598-018-20471-5.
6
Radiomics: a new application from established techniques.
Expert Rev Precis Med Drug Dev. 2016;1(2):207-226. doi: 10.1080/23808993.2016.1164013. Epub 2016 Mar 31.
7
Diagnostic performance of F-FDG-PET-CT in adrenal lesions using histopathology as reference standard.
Abdom Radiol (NY). 2017 Feb;42(2):577-584. doi: 10.1007/s00261-016-0915-4.
8
Applications and limitations of radiomics.
Phys Med Biol. 2016 Jul 7;61(13):R150-66. doi: 10.1088/0031-9155/61/13/R150. Epub 2016 Jun 8.
10
copCAR: A Flexible Regression Model for Areal Data.
J Comput Graph Stat. 2015 Sep 16;24(3):733-755. doi: 10.1080/10618600.2014.948178. Epub 2014 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验