Department of Polymer& Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
Molecules. 2019 Aug 22;24(17):3048. doi: 10.3390/molecules24173048.
A novel magnetic-functionalized-multi-walled carbon nanotubes@chitosan -heterocyclic carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) nanocatalyst is developed in two steps. The first step entails the fabrication of a three-component cross-linking of chitosan utilizing the Debus-Radziszewski imidazole approach. The second step comprised the covalent grafting of prepared cross-linked chitosan to the outer walls of magnetically functionalized MWCNTs (M-f-MWCNTs) followed by introducing PdCl to generate the m-f-MWCNTs@cross-linked chitosan with a novel NHC ligand. The repeated units of the amino group in the chitosan polymer chain provide the synthesis of several imidazole units which also increase the number of Pd linkers thus leading to higher catalyst efficiency. The evaluation of catalytic activity was examined in the expeditious synthesis of biaryl compounds using the Suzuki cross-coupling reaction of various aryl halides and aryl boronic acids; ensuing results show the general applicability of nanocatalyst with superior conversion reaction yields, high turnover frequencies (TOFs) and turnover numbers (TON). Meanwhile, nanocatalyst showed admirable potential in reusability tests, being recycled for five runs without losing significant activities under optimum reaction conditions. The successfully synthesis of catalyst and its characterization was confirmed using the Fourier transform infrared spectrometer (FT-IR), spectrometer transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and thermogravimetric analysis (TGA).
一种新型磁性功能化多壁碳纳米管@壳聚糖-杂环卡宾-钯(M-f-MWCNTs@chitosan-NHC-Pd)纳米催化剂通过两步法合成。第一步是利用 Debus-Radziszewski 咪唑法制备壳聚糖的三组分交联。第二步是将制备好的交联壳聚糖共价接枝到磁性功能化多壁碳纳米管(M-f-MWCNTs)的外壁上,然后引入 PdCl 以生成具有新型 NHC 配体的 M-f-MWCNTs@交联壳聚糖。壳聚糖聚合物链中氨基的重复单元提供了合成几个咪唑单元的条件,这也增加了 Pd 连接体的数量,从而导致更高的催化剂效率。通过各种芳基卤化物和芳基硼酸的 Suzuki 交叉偶联反应,对催化活性进行了快速合成二芳基化合物的评估;结果表明,纳米催化剂具有广泛的适用性,转化率反应产率高,周转频率(TOF)和周转数(TON)高。同时,纳米催化剂在可重复使用性测试中表现出令人钦佩的潜力,在最佳反应条件下,可循环使用五次而不会失去显著的活性。使用傅里叶变换红外光谱(FT-IR)、光谱透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X 射线光电子能谱(XPS)和热重分析(TGA)对催化剂的成功合成及其结构进行了确认。