Suppr超能文献

基于传感器驱动人工智能的土地适宜性评估农业推荐模型。

Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability.

作者信息

Vincent Durai Raj, Deepa N, Elavarasan Dhivya, Srinivasan Kathiravan, Chauhdary Sajjad Hussain, Iwendi Celestine

机构信息

School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.

College of Computer Science and Engineering, University of Jeddah, Jeddah 21577, Saudi Arabia.

出版信息

Sensors (Basel). 2019 Aug 23;19(17):3667. doi: 10.3390/s19173667.

Abstract

The world population is expected to grow by another two billion in 2050, according to the survey taken by the Food and Agriculture Organization, while the arable area is likely to grow only by 5%. Therefore, smart and efficient farming techniques are necessary to improve agriculture productivity. Agriculture land suitability assessment is one of the essential tools for agriculture development. Several new technologies and innovations are being implemented in agriculture as an alternative to collect and process farm information. The rapid development of wireless sensor networks has triggered the design of low-cost and small sensor devices with the Internet of Things (IoT) empowered as a feasible tool for automating and decision-making in the domain of agriculture. This research proposes an expert system by integrating sensor networks with Artificial Intelligence systems such as neural networks and Multi-Layer Perceptron (MLP) for the assessment of agriculture land suitability. This proposed system will help the farmers to assess the agriculture land for cultivation in terms of four decision classes, namely more suitable, suitable, moderately suitable, and unsuitable. This assessment is determined based on the input collected from the various sensor devices, which are used for training the system. The results obtained using MLP with four hidden layers is found to be effective for the multiclass classification system when compared to the other existing model. This trained model will be used for evaluating future assessments and classifying the land after every cultivation.

摘要

根据联合国粮食及农业组织的调查,预计到2050年世界人口将再增加20亿,而可耕地面积可能仅增长5%。因此,需要智能高效的农业技术来提高农业生产力。农业土地适宜性评估是农业发展的重要工具之一。目前,农业领域正在采用多种新技术和创新手段来收集和处理农场信息。无线传感器网络的迅速发展促使了低成本、小型传感器设备的设计,物联网技术作为一种可行的工具,被用于农业领域的自动化和决策制定。本研究提出了一种将传感器网络与神经网络、多层感知器(MLP)等人工智能系统相结合的专家系统,用于评估农业土地适宜性。该系统将帮助农民根据更适宜、适宜、中度适宜和不适宜这四个决策类别来评估耕地。这种评估是基于从各种传感器设备收集的输入数据进行的,这些数据用于训练系统。与其他现有模型相比,使用具有四个隐藏层的MLP获得的结果对于多类分类系统是有效的。这个经过训练的模型将用于评估未来的评估结果,并在每次耕种后对土地进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3221/6749515/87f0bec7c4fa/sensors-19-03667-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验