Departamento de Química Física I, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain.
Departamento de Química Física, Facultad de Ciencias Químicas , Universidad de Salamanca , 37008 Salamanca , Spain.
J Phys Chem A. 2019 Sep 19;123(37):7920-7931. doi: 10.1021/acs.jpca.9b06695. Epub 2019 Sep 10.
In the past decade, ring polymer molecular dynamics (RPMD) has emerged as a very efficient method to determine thermal rate coefficients for a great variety of chemical reactions. This work presents the application of this methodology to study the O(P) + HCl reaction, which constitutes a stringent test for any dynamical calculation due to rich resonant structure and other dynamical features. The rate coefficients, calculated on the A' and A″ potential energy surfaces (PESs) by Ramachandran and Peterson [ 2003 , 119 , 9590 ], using RPMD and quasiclassical trajectories (QCT) are compared with the existing experimental and the quantum mechanical (QM) results by Xie et al. [ 2005 122 , 014301 ]. The agreement is very good at > 600 K, although RPMD underestimates rate coefficients by a factor between 4 and 2 in the 200-500 K interval. The origin of these discrepancies lies in the large contribution from tunneling on the A″ PES, which is enhanced by resonances due to quasibound states in the van der Waals wells. Although tunneling is fairly well accounted for by RPMD even below the crossover temperature, the effect of resonances, a long-time effect, is not included in the methodology. At the highest temperatures studied in this work, 2000-3300 K, the RPMD rate coefficients are somewhat larger than the QM ones, but this is shown to be due to limitations in the QM calculations and the RPMD are believed to be more reliable.
在过去的十年中,环聚合物分子动力学(RPMD)已成为一种非常有效的方法,可以确定各种化学反应的热速率系数。这项工作应用该方法研究 O(P) + HCl 反应,由于丰富的共振结构和其他动力学特征,该反应对任何动力学计算都是一个严格的考验。使用 RPMD 和准经典轨迹(QCT),根据 Ramachandran 和 Peterson [2003, 119, 9590]计算的 A'和 A″势能面(PES)上的速率系数与 Xie 等人的现有实验和量子力学(QM)结果进行了比较。[2005 122, 014301]。在 > 600 K 时, agreement 非常好,尽管在 200-500 K 范围内,RPMD 低估了速率系数 4 到 2 倍。这些差异的根源在于 A″PES 上的隧道效应贡献很大,由于范德华势阱中的准束缚态,共振增强了这种贡献。尽管即使在交叉温度以下,RPMD 也能很好地解释隧道效应,但这种长期效应的共振效应并未包含在该方法中。在这项工作研究的最高温度(2000-3300 K)下,RPMD 速率系数略大于 QM 速率系数,但这被证明是由于 QM 计算的限制,并且认为 RPMD 更可靠。