Department of Cardiovascular Medicine Mayo Clinic Rochester MN.
Division of Pulmonary and Critical Care Medicine Department of Internal Medicine Mayo Clinic Rochester MN.
J Am Heart Assoc. 2019 Sep 3;8(17):e013675. doi: 10.1161/JAHA.119.013675. Epub 2019 Aug 29.
Background There are no risk scores designed specifically for mortality risk prediction in unselected cardiac intensive care unit (CICU) patients. We sought to develop a novel CICU-specific risk score for prediction of hospital mortality using variables available at the time of CICU admission. Methods and Results A database of CICU patients admitted from January 1, 2007 to April 30, 2018 was divided into derivation and validation cohorts. The top 7 predictors of hospital mortality were identified using stepwise backward regression, then used to develop the Mayo CICU Admission Risk Score (M-CARS), with integer scores ranging from 0 to 10. Discrimination was assessed using area under the receiver-operator curve analysis. Calibration was assessed using the Hosmer-Lemeshow statistic. The derivation cohort included 10 004 patients and the validation cohort included 2634 patients (mean age 67.6 years, 37.7% females). Hospital mortality was 9.2%. Predictor variables included in the M-CARS were cardiac arrest, shock, respiratory failure, Braden skin score, blood urea nitrogen, anion gap and red blood cell distribution width at the time of CICU admission. The M-CARS showed a graded relationship with hospital mortality (odds ratio 1.84 for each 1-point increase in M-CARS, 95% CI 1.78-1.89). In the validation cohort, the M-CARS had an area under the receiver-operator curve of 0.86 for hospital mortality, with good calibration (P=0.21). The 47.1% of patients with M-CARS <2 had hospital mortality of 0.8%, and the 5.2% of patients with M-CARS >6 had hospital mortality of 51.6%. Conclusions Using 7 variables available at the time of CICU admission, the M-CARS can predict hospital mortality in unselected CICU patients with excellent discrimination.
目前尚无专门针对非选择性心脏重症监护病房(CICU)患者的死亡率风险预测的风险评分。我们试图开发一种新的 CICU 特异性风险评分,以预测 CICU 入院时可用变量的住院死亡率。
将 2007 年 1 月 1 日至 2018 年 4 月 30 日期间收治的 CICU 患者数据库分为推导队列和验证队列。使用逐步向后回归方法确定 7 个与住院死亡率相关的最高预测因子,然后使用这些预测因子开发 Mayo CICU 入院风险评分(M-CARS),整数评分范围为 0 至 10。使用接收者操作特征曲线分析评估区分度,使用 Hosmer-Lemeshow 统计评估校准度。推导队列包括 10004 例患者,验证队列包括 2634 例患者(平均年龄 67.6 岁,37.7%为女性)。住院死亡率为 9.2%。M-CARS 纳入的预测变量包括心脏骤停、休克、呼吸衰竭、Braden 皮肤评分、血尿素氮、阴离子间隙和红细胞分布宽度。M-CARS 与住院死亡率呈梯度关系(M-CARS 每增加 1 分,住院死亡率增加 1.84,95%CI 1.78-1.89)。在验证队列中,M-CARS 对住院死亡率的曲线下面积为 0.86,具有良好的校准度(P=0.21)。M-CARS<2 的患者中有 47.1%的住院死亡率为 0.8%,M-CARS>6 的患者中有 5.2%的住院死亡率为 51.6%。
使用 CICU 入院时可用的 7 个变量,M-CARS 可以对非选择性 CICU 患者的住院死亡率进行准确预测,具有良好的区分度。