Suppr超能文献

一种新型心脏重症监护病房入院风险评分模型对死亡率的推导和验证。

Derivation and Validation of a Novel Cardiac Intensive Care Unit Admission Risk Score for Mortality.

机构信息

Department of Cardiovascular Medicine Mayo Clinic Rochester MN.

Division of Pulmonary and Critical Care Medicine Department of Internal Medicine Mayo Clinic Rochester MN.

出版信息

J Am Heart Assoc. 2019 Sep 3;8(17):e013675. doi: 10.1161/JAHA.119.013675. Epub 2019 Aug 29.

Abstract

Background There are no risk scores designed specifically for mortality risk prediction in unselected cardiac intensive care unit (CICU) patients. We sought to develop a novel CICU-specific risk score for prediction of hospital mortality using variables available at the time of CICU admission. Methods and Results A database of CICU patients admitted from January 1, 2007 to April 30, 2018 was divided into derivation and validation cohorts. The top 7 predictors of hospital mortality were identified using stepwise backward regression, then used to develop the Mayo CICU Admission Risk Score (M-CARS), with integer scores ranging from 0 to 10. Discrimination was assessed using area under the receiver-operator curve analysis. Calibration was assessed using the Hosmer-Lemeshow statistic. The derivation cohort included 10 004 patients and the validation cohort included 2634 patients (mean age 67.6 years, 37.7% females). Hospital mortality was 9.2%. Predictor variables included in the M-CARS were cardiac arrest, shock, respiratory failure, Braden skin score, blood urea nitrogen, anion gap and red blood cell distribution width at the time of CICU admission. The M-CARS showed a graded relationship with hospital mortality (odds ratio 1.84 for each 1-point increase in M-CARS, 95% CI 1.78-1.89). In the validation cohort, the M-CARS had an area under the receiver-operator curve of 0.86 for hospital mortality, with good calibration (P=0.21). The 47.1% of patients with M-CARS <2 had hospital mortality of 0.8%, and the 5.2% of patients with M-CARS >6 had hospital mortality of 51.6%. Conclusions Using 7 variables available at the time of CICU admission, the M-CARS can predict hospital mortality in unselected CICU patients with excellent discrimination.

摘要

背景

目前尚无专门针对非选择性心脏重症监护病房(CICU)患者的死亡率风险预测的风险评分。我们试图开发一种新的 CICU 特异性风险评分,以预测 CICU 入院时可用变量的住院死亡率。

方法和结果

将 2007 年 1 月 1 日至 2018 年 4 月 30 日期间收治的 CICU 患者数据库分为推导队列和验证队列。使用逐步向后回归方法确定 7 个与住院死亡率相关的最高预测因子,然后使用这些预测因子开发 Mayo CICU 入院风险评分(M-CARS),整数评分范围为 0 至 10。使用接收者操作特征曲线分析评估区分度,使用 Hosmer-Lemeshow 统计评估校准度。推导队列包括 10004 例患者,验证队列包括 2634 例患者(平均年龄 67.6 岁,37.7%为女性)。住院死亡率为 9.2%。M-CARS 纳入的预测变量包括心脏骤停、休克、呼吸衰竭、Braden 皮肤评分、血尿素氮、阴离子间隙和红细胞分布宽度。M-CARS 与住院死亡率呈梯度关系(M-CARS 每增加 1 分,住院死亡率增加 1.84,95%CI 1.78-1.89)。在验证队列中,M-CARS 对住院死亡率的曲线下面积为 0.86,具有良好的校准度(P=0.21)。M-CARS<2 的患者中有 47.1%的住院死亡率为 0.8%,M-CARS>6 的患者中有 5.2%的住院死亡率为 51.6%。

结论

使用 CICU 入院时可用的 7 个变量,M-CARS 可以对非选择性 CICU 患者的住院死亡率进行准确预测,具有良好的区分度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6069/6755843/ee246e5f5f0f/JAH3-8-e013675-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验