Ekman Freja K, Ojala David S, Adil Maroof M, Lopez Paola A, Schaffer David V, Gaj Thomas
Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
Mol Ther Nucleic Acids. 2019 Sep 6;17:829-839. doi: 10.1016/j.omtn.2019.07.009. Epub 2019 Jul 26.
Huntington's disease (HD) is a currently incurable and, ultimately, fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant protein that forms inclusions and selectively destroys neurons in the striatum and other adjacent structures. The RNA-guided Cas9 endonuclease from CRISPR-Cas9 systems is a versatile technology for inducing DNA double-strand breaks that can stimulate the introduction of frameshift-inducing mutations and permanently disable mutant gene function. Here, we show that the Cas9 nuclease from Staphylococcus aureus, a small Cas9 ortholog that can be packaged alongside a single guide RNA into a single adeno-associated virus (AAV) vector, can be used to disrupt the expression of the mutant HTT gene in the R6/2 mouse model of HD following its in vivo delivery to the striatum. Specifically, we found that CRISPR-Cas9-mediated disruption of the mutant HTT gene resulted in a ∼50% decrease in neuronal inclusions and significantly improved lifespan and certain motor deficits. These results thus illustrate the potential for CRISPR-Cas9 technology to treat HD and other autosomal dominant neurodegenerative disorders caused by a trinucleotide repeat expansion via in vivo genome editing.
亨廷顿舞蹈病(HD)是一种目前无法治愈且最终会致命的神经退行性疾病,由亨廷顿蛋白(HTT)基因第1外显子中的CAG三核苷酸重复序列扩增引起,这会导致产生一种突变蛋白,该蛋白形成包涵体并选择性地破坏纹状体和其他相邻结构中的神经元。来自CRISPR-Cas9系统的RNA引导的Cas9核酸酶是一种用于诱导DNA双链断裂的通用技术,可刺激引入移码诱导突变并永久使突变基因功能失活。在这里,我们表明,来自金黄色葡萄球菌的Cas9核酸酶是一种小型Cas9直系同源物,可与单个引导RNA一起包装到单个腺相关病毒(AAV)载体中,在体内递送至纹状体后,可用于破坏HD的R6/2小鼠模型中突变HTT基因的表达。具体而言,我们发现CRISPR-Cas9介导的突变HTT基因破坏导致神经元包涵体减少约50%,并显著改善了寿命和某些运动缺陷。因此,这些结果说明了CRISPR-Cas9技术通过体内基因组编辑治疗HD和其他由三核苷酸重复序列扩增引起的常染色体显性神经退行性疾病的潜力。