Suppr超能文献

从标记重捕数据中联合估计生长和存活,以改善对野生种群衰老的估计。

Joint estimation of growth and survival from mark-recapture data to improve estimates of senescence in wild populations.

机构信息

Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA.

出版信息

Ecology. 2020 Jan;101(1):e02877. doi: 10.1002/ecy.2877. Epub 2019 Dec 26.

Abstract

Understanding age-dependent patterns of survival is fundamental to predicting population dynamics, understanding selective pressures, and estimating rates of senescence. However, quantifying age-specific survival in wild populations poses significant logistical and statistical challenges. Recent work has helped to alleviate these constraints by demonstrating that age-specific survival can be estimated using mark-recapture data even when age is unknown for all or some individuals. However, previous approaches do not incorporate auxiliary information that can improve age estimates of individuals. We introduce a survival estimator that combines a von Bertalanffy growth model, age-specific hazard functions, and a Cormack-Jolly-Seber mark-recapture model into a single hierarchical framework. This approach allows us to obtain information about age and its uncertainty based on size and growth for individuals of unknown age when estimating age-specific survival. Using both simulated and real-world data for two painted turtle (Chrysemys picta) populations, we demonstrate that this additional information substantially reduces the bias of age-specific hazard rates, which allows for the testing of hypotheses related to aging. Estimating patterns of senescence is just one practical application of jointly estimating survival and growth; other applications include obtaining better estimates of the timing of recruitment and improved understanding of life-history trade-offs between growth and survival.

摘要

了解生存的年龄依赖性模式对于预测种群动态、理解选择压力以及估计衰老率至关重要。然而,在野外种群中量化特定年龄的生存面临着重大的逻辑和统计挑战。最近的研究工作通过证明即使所有或某些个体的年龄未知,也可以使用标记重捕数据来估计特定年龄的生存,从而帮助缓解了这些限制。然而,以前的方法并没有利用可以改善个体年龄估计的辅助信息。我们引入了一种生存估计器,它将 von Bertalanffy 生长模型、特定年龄的危险函数和 Cormack-Jolly-Seber 标记重捕模型结合到一个单一的层次框架中。这种方法允许我们在估计特定年龄的生存时,根据未知年龄个体的大小和生长来获得关于年龄及其不确定性的信息。我们使用两个彩龟(Chrysemys picta)种群的模拟和真实数据进行了演示,表明这种额外的信息大大减少了特定年龄危险率的偏差,从而可以检验与衰老相关的假设。估计衰老模式只是联合估计生存和生长的一个实际应用;其他应用包括获得更好的招募时间估计和更好地理解生长和生存之间的生活史权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63f2/7493972/3a8e61efafef/nihms-1048754-f0001.jpg

相似文献

4
Decades of field data reveal that turtles senesce in the wild.数十年的野外数据表明,海龟在自然环境中会衰老。
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6502-7. doi: 10.1073/pnas.1600035113. Epub 2016 May 2.

引用本文的文献

2
Comparative analysis of animal lifespan.动物寿命的比较分析。
Geroscience. 2024 Feb;46(1):171-181. doi: 10.1007/s11357-023-00984-2. Epub 2023 Oct 27.

本文引用的文献

2
Sex Differences in Lifespan.寿命的性别差异。
Cell Metab. 2016 Jun 14;23(6):1022-1033. doi: 10.1016/j.cmet.2016.05.019.
3
Decades of field data reveal that turtles senesce in the wild.数十年的野外数据表明,海龟在自然环境中会衰老。
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6502-7. doi: 10.1073/pnas.1600035113. Epub 2016 May 2.
5
Diversity of ageing across the tree of life.生命之树中的衰老多样性。
Nature. 2014 Jan 9;505(7482):169-73. doi: 10.1038/nature12789. Epub 2013 Dec 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验