Suppr超能文献

脑血容量和表观扩散系数——复发性胶质母细胞瘤患者对贝伐单抗治疗无反应的重要预测指标。

Cerebral blood volume and apparent diffusion coefficient - Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma.

作者信息

Petrova Lucie, Korfiatis Panagiotis, Petr Ondra, LaChance Daniel H, Parney Ian, Buckner Jan C, Erickson Bradley J

机构信息

Department of Anesthesiology and Critical Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; Austria and Department of Neurosurgery, Military Hospital in Prague, 16902 Praha 6, Czech Republic.

Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.

出版信息

J Neurol Sci. 2019 Oct 15;405:116433. doi: 10.1016/j.jns.2019.116433. Epub 2019 Aug 23.

Abstract

BACKGROUND

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The core of standard of care for newly diagnosed GBM was established in 2005 and includes maximum feasible surgical resection followed by radiation and temozolomide, with subsequent temozolomide with or without tumor-treating fields. Unfortunately, nearly all patients experience a recurrence. Bevacizumab (BV) is a commonly used second-line agent for such recurrences, but it has not been shown to impact overall survival, and short-term response is variable.

METHODS

We collected MRI perfusion and diffusion images from 54 subjects with recurrent GBM treated only with radiation and temozolomide. They were subsequently treated with BV. Using machine learning, we created a model to predict short term response (6 months) and overall survival. We set time thresholds to maximize the separation of responders/survivors versus non-responders/short survivors.

RESULTS

We were able to segregate 21 (68%) of 31 subjects into unlikely to respond categories based on Progression Free Survival at 6 months (PFS6) criteria. Twenty-two (69%) of 32 subjects could similarly be identified as unlikely to survive long using the machine learning algorithm.

CONCLUSION

With the use of machine learning techniques to evaluate imaging features derived from pre- and post-treatment multimodal MRI, it is possible to identify an important fraction of patients who are either highly unlikely to respond, or highly likely to respond. This can be helpful is selecting patients that either should or should not be treated with BV.

摘要

背景

多形性胶质母细胞瘤(GBM)是成人中最常见的原发性脑肿瘤。2005年确立了新诊断GBM的标准治疗核心,包括最大程度可行的手术切除,随后进行放疗和替莫唑胺治疗,后续可联合或不联合肿瘤治疗电场使用替莫唑胺。不幸的是,几乎所有患者都会复发。贝伐单抗(BV)是此类复发常用的二线药物,但尚未证明其能影响总生存期,且短期反应存在差异。

方法

我们收集了54例仅接受放疗和替莫唑胺治疗的复发性GBM患者的MRI灌注和扩散图像。他们随后接受了BV治疗。我们使用机器学习创建了一个模型来预测短期反应(6个月)和总生存期。我们设定时间阈值以最大程度区分反应者/生存者与无反应者/短期生存者。

结果

根据6个月无进展生存期(PFS6)标准,我们能够将31例患者中的21例(68%)归入不太可能有反应的类别。使用机器学习算法,32例患者中的22例(69%)同样可被确定为不太可能长期生存。

结论

通过使用机器学习技术评估治疗前和治疗后多模态MRI得出的影像特征,有可能识别出很大一部分极不可能有反应或极可能有反应的患者。这有助于选择应该或不应该接受BV治疗的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验