Suppr超能文献

在一种紫色非硫细菌中模拟光合作用、CO 固定和醌池之间的相互作用。

Modeling the Interplay between Photosynthesis, CO Fixation, and the Quinone Pool in a Purple Non-Sulfur Bacterium.

机构信息

Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.

出版信息

Sci Rep. 2019 Sep 2;9(1):12638. doi: 10.1038/s41598-019-49079-z.

Abstract

Rhodopseudomonas palustris CGA009 is a purple non-sulfur bacterium that can fix carbon dioxide (CO) and nitrogen or break down organic compounds for its carbon and nitrogen requirements. Light, inorganic, and organic compounds can all be used for its source of energy. Excess electrons produced during its metabolic processes can be exploited to produce hydrogen gas or biodegradable polyesters. A genome-scale metabolic model of the bacterium was reconstructed to study the interactions between photosynthesis, CO fixation, and the redox state of the quinone pool. A comparison of model-predicted flux values with available Metabolic Flux Analysis (MFA) fluxes yielded predicted errors of 5-19% across four different growth substrates. The model predicted the presence of an unidentified sink responsible for the oxidation of excess quinols generated by the TCA cycle. Furthermore, light-dependent energy production was found to be highly dependent on the quinol oxidation rate. Finally, the extent of CO fixation was predicted to be dependent on the amount of ATP generated through the electron transport chain, with excess ATP going toward the energy-demanding Calvin-Benson-Bassham (CBB) pathway. Based on this analysis, it is hypothesized that the quinone redox state acts as a feed-forward controller of the CBB pathway, signaling the amount of ATP available.

摘要

沼泽红假单胞菌 CGA009 是一种紫色非硫细菌,能够固定二氧化碳 (CO) 和氮,或分解有机化合物以获取其碳和氮需求。光、无机和有机化合物都可以作为其能源来源。在其代谢过程中产生的多余电子可用于生产氢气或可生物降解的聚酯。为了研究光合作用、CO 固定和醌池氧化还原状态之间的相互作用,构建了该细菌的基因组规模代谢模型。将模型预测的通量值与可用的代谢通量分析 (MFA) 通量进行比较,在四种不同的生长基质中,预测误差为 5-19%。该模型预测存在一个未识别的汇,负责氧化 TCA 循环产生的多余的醌醇。此外,发现光依赖性能量产生高度依赖于醌的氧化速率。最后,预测 CO 固定的程度取决于通过电子传递链生成的 ATP 量,多余的 ATP 用于耗能的卡尔文-本森-巴斯汉姆 (CBB) 途径。基于此分析,假设醌的氧化还原状态作为 CBB 途径的前馈控制器,指示可用的 ATP 量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f763/6718658/b983acabea90/41598_2019_49079_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验