Dahl Gregor Thomas, Döring Sebastian, Krekeler Tobias, Janssen Rolf, Ritter Martin, Weller Horst, Vossmeyer Tobias
Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
Electron Microscopy Unit, Hamburg University of Technology, Eißendorfer Straße 42 (M), 21073 Hamburg, Germany.
Materials (Basel). 2019 Sep 5;12(18):2856. doi: 10.3390/ma12182856.
Zirconia nanoceramics are interesting materials for numerous high-temperature applications. Because their beneficial properties are mainly governed by the crystal and microstructure, it is essential to understand and control these features. The use of co-stabilizing agents in the sol-gel synthesis of zirconia submicro-particles should provide an effective tool for adjusting the particles' size and shape. Furthermore, alumina-doping is expected to enhance the particles' size and shape persistence at high temperatures, similar to what is observed in corresponding bulk ceramics. Dispersed alumina should inhibit grain growth by forming diffusion barriers, additionally impeding the martensitic phase transformation in zirconia grains. Here, alumina-doped zirconia particles with sphere-like shape and average diameters of ∼ 300 n m were synthesized using a modified sol-gel route employing icosanoic acid and hydroxypropyl cellulose as stabilizing agents. The particles were annealed at temperatures between 800 and 1200 ∘ C and characterized by electron microscopy, elemental analysis, and X-ray diffraction. Complementary elemental analyses confirmed the precise control over the alumina content (0-50 mol%) in the final product. Annealed alumina-doped particles showed more pronounced shape persistence after annealing at 1000 ∘ C than undoped particles. Quantitative phase analyses revealed an increased stabilization of the tetragonal/cubic zirconia phase and a reduced grain growth with increasing alumina content. Elemental mapping indicated pronounced alumina segregation near the grain boundaries during annealing.
氧化锆纳米陶瓷是用于众多高温应用的有趣材料。由于它们的有益特性主要由晶体和微观结构决定,因此了解和控制这些特征至关重要。在氧化锆亚微米颗粒的溶胶 - 凝胶合成中使用共稳定剂应提供一种调整颗粒尺寸和形状的有效工具。此外,氧化铝掺杂有望提高颗粒在高温下的尺寸和形状稳定性,类似于在相应块状陶瓷中观察到的情况。分散的氧化铝应通过形成扩散屏障来抑制晶粒生长,此外还会阻碍氧化锆晶粒中的马氏体相变。在此,使用以二十二烷酸和羟丙基纤维素作为稳定剂的改进溶胶 - 凝胶路线合成了具有球形形状且平均直径约为300 nm的氧化铝掺杂氧化锆颗粒。将这些颗粒在800至1200℃之间的温度下退火,并通过电子显微镜、元素分析和X射线衍射进行表征。补充元素分析证实了对最终产物中氧化铝含量(0 - 50 mol%)的精确控制。与未掺杂的颗粒相比,退火后的氧化铝掺杂颗粒在1000℃退火后表现出更明显的形状稳定性。定量相分析表明,随着氧化铝含量的增加,四方/立方氧化锆相的稳定性增加,晶粒生长减少。元素映射表明在退火过程中晶界附近有明显的氧化铝偏析。