Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia.
Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Malaysia.
Neural Netw. 2019 Nov;119:299-312. doi: 10.1016/j.neunet.2019.08.017. Epub 2019 Sep 2.
Document classification aims to assign one or more classes to a document for ease of management by understanding the content of a document. Hierarchical attention network (HAN) has been showed effective to classify documents that are ambiguous. HAN parses information-intense documents into slices (i.e., words and sentences) such that each slice can be learned separately and in parallel before assigning the classes. However, introducing hierarchical attention approach leads to the redundancy of training parameters which is prone to overfitting. To mitigate the concern of overfitting, we propose a variant of hierarchical attention network using adversarial and virtual adversarial perturbations in 1) word representation, 2) sentence representation and 3) both word and sentence representations. The proposed variant is tested on eight publicly available datasets. The results show that the proposed variant outperforms the hierarchical attention network with and without using random perturbation. More importantly, the proposed variant achieves state-of-the-art performance on multiple benchmark datasets. Visualizations and analysis are provided to show that perturbation can effectively alleviate the overfitting issue and improve the performance of hierarchical attention network.
文档分类旨在通过理解文档的内容将一个或多个类别分配给文档,以便于管理。层次注意网络 (HAN) 已被证明对于分类模糊的文档是有效的。HAN 将信息密集型文档解析成切片(即单词和句子),以便在分配类别之前可以分别且并行地学习每个切片。然而,引入层次注意方法会导致训练参数的冗余,从而容易产生过拟合。为了减轻过拟合的问题,我们提出了一种使用对抗和虚拟对抗扰动的层次注意网络变体,用于 1)单词表示、2)句子表示和 3)单词和句子表示。该变体在八个公开可用的数据集上进行了测试。结果表明,该变体在使用和不使用随机扰动的情况下都优于层次注意网络。更重要的是,该变体在多个基准数据集上实现了最先进的性能。提供了可视化和分析,以表明扰动可以有效地缓解过拟合问题并提高层次注意网络的性能。