Suppr超能文献

Tn7 元件的靶向转座:安全位点、移动质粒、CRISPR/Cas 及其他。

Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.

机构信息

Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, NY, 14853, USA.

出版信息

Mol Microbiol. 2019 Dec;112(6):1635-1644. doi: 10.1111/mmi.14383. Epub 2019 Sep 18.

Abstract

Transposon Tn7 is notable for the control it exercises over where transposition events are directed. One Tn7 integration pathways recognizes a highly conserved attachment (att) site in the chromosome, while a second pathway specifically recognizes mobile plasmids that facilitate transfer of the element to new hosts. In this review, I discuss newly discovered families of Tn7-like elements with different targeting pathways. Perhaps the most exciting examples are multiple instances where Tn7-like elements have repurposed CRISPR/Cas systems. In these cases, the CRISPR/Cas systems have lost their canonical defensive function to destroy incoming mobile elements; instead, the systems have been naturally adapted to use guide RNAs to specifically direct transposition into these mobile elements. The new families of Tn7-like elements also include a variety of novel att sites in bacterial chromosomes where genome islands can form. Interesting families have also been revealed where proteins described in the prototypic Tn7 element are fused or otherwise repurposed for the new dual activities. This expanded understanding of Tn7-like elements broadens our view of how genetic systems are repurposed and provides potentially exciting new tools for genome modification and genomics. Future opportunities and challenges to understanding the impact of the new families of Tn7-like elements are discussed.

摘要

转座子 Tn7 以其对转座事件定向的控制而引人注目。一种 Tn7 整合途径识别染色体中高度保守的附着(att)位点,而另一种途径则专门识别有助于将元件转移到新宿主的移动质粒。在这篇综述中,我讨论了具有不同靶向途径的新发现的 Tn7 样元件家族。也许最令人兴奋的例子是 Tn7 样元件多次重新利用 CRISPR/Cas 系统的情况。在这些情况下,CRISPR/Cas 系统已经失去了其经典的防御功能来破坏传入的移动元件;相反,这些系统已经被自然地适应使用指导 RNA 将转座特异性地引导到这些移动元件中。新的 Tn7 样元件家族还包括细菌染色体中各种新的 att 位点,基因组岛可以在这些位点形成。有趣的家族也被揭示出来,其中描述的蛋白质在原型 Tn7 元件中融合或以其他方式重新用于新的双重活性。对 Tn7 样元件的扩展理解拓宽了我们对遗传系统如何被重新利用的看法,并为基因组修饰和基因组学提供了潜在令人兴奋的新工具。讨论了理解新的 Tn7 样元件家族的影响的未来机会和挑战。

相似文献

1
Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.
Mol Microbiol. 2019 Dec;112(6):1635-1644. doi: 10.1111/mmi.14383. Epub 2019 Sep 18.
2
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
3
Recruitment of CRISPR-Cas systems by Tn7-like transposons.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366. doi: 10.1073/pnas.1709035114. Epub 2017 Aug 15.
4
Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
Cell. 2020 Dec 23;183(7):1757-1771.e18. doi: 10.1016/j.cell.2020.11.005. Epub 2020 Dec 2.
5
CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species.
BMC Genomics. 2019 Feb 4;20(1):105. doi: 10.1186/s12864-019-5439-1.
6
Metagenomic discovery of CRISPR-associated transposons.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2112279118.
8
Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
Nature. 2019 Jul;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub 2019 Jun 12.
9
Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
Mol Cell. 2022 Feb 3;82(3):616-628.e5. doi: 10.1016/j.molcel.2021.12.021. Epub 2022 Jan 19.
10
Dual modes of CRISPR-associated transposon homing.
Cell. 2021 Apr 29;184(9):2441-2453.e18. doi: 10.1016/j.cell.2021.03.006. Epub 2021 Mar 25.

引用本文的文献

1
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 .
Antibiotics (Basel). 2025 Jul 25;14(8):750. doi: 10.3390/antibiotics14080750.
2
Asymmetric loading of TnsE regulates Tn7 targeting of DNA replication structures.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf472.
3
A megatransposon drives the adaptation of Thermoanaerobacter kivui to carbon monoxide.
Nat Commun. 2025 May 6;16(1):4217. doi: 10.1038/s41467-025-59103-8.
5
Integration of therapeutic cargo into the human genome with programmable type V-K CAST.
Nat Commun. 2025 Mar 13;16(1):2427. doi: 10.1038/s41467-025-57416-2.
6
Structure of TnsABCD transpososome reveals mechanisms of targeted DNA transposition.
Cell. 2024 Nov 27;187(24):6865-6881.e16. doi: 10.1016/j.cell.2024.09.023. Epub 2024 Oct 8.
7
Tools for genetic engineering and gene expression control in and .
Appl Environ Microbiol. 2024 Oct 23;90(10):e0034824. doi: 10.1128/aem.00348-24. Epub 2024 Sep 26.
8
Modified Tn transposon vectors for controlled chromosomal gene expression.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0155624. doi: 10.1128/aem.01556-24. Epub 2024 Sep 18.
9
Assembly of the Tn7 targeting complex by a regulated stepwise process.
Mol Cell. 2024 Jun 20;84(12):2368-2381.e6. doi: 10.1016/j.molcel.2024.05.012. Epub 2024 Jun 3.
10
Annotation and Comparative Genomics of Prokaryotic Transposable Elements.
Methods Mol Biol. 2024;2802:189-213. doi: 10.1007/978-1-0716-3838-5_8.

本文引用的文献

1
Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
Nature. 2020 Jan;577(7789):271-274. doi: 10.1038/s41586-019-1849-0. Epub 2019 Dec 18.
2
Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
Nature. 2019 Jul;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub 2019 Jun 12.
3
RNA-guided DNA insertion with CRISPR-associated transposases.
Science. 2019 Jul 5;365(6448):48-53. doi: 10.1126/science.aax9181. Epub 2019 Jun 6.
4
CRISPR-Cas in mobile genetic elements: counter-defence and beyond.
Nat Rev Microbiol. 2019 Aug;17(8):513-525. doi: 10.1038/s41579-019-0204-7.
6
Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi.
Nat Microbiol. 2019 Feb;4(2):244-250. doi: 10.1038/s41564-018-0327-z. Epub 2019 Jan 7.
8
Systematic discovery of antiphage defense systems in the microbial pangenome.
Science. 2018 Mar 2;359(6379). doi: 10.1126/science.aar4120. Epub 2018 Jan 25.
9
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
10
The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
mBio. 2017 Sep 19;8(5):e01397-17. doi: 10.1128/mBio.01397-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验