Fonseca Erik R, Mendoza Carlos I
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 CdMx, Mexico.
J Phys Condens Matter. 2020 Jan 1;32(1):015101. doi: 10.1088/1361-648X/ab42fc. Epub 2019 Sep 10.
Using Monte Carlo simulations, we study the assembly of colloidal particles interacting via isotropic core-corona potentials in two dimensions and confined in a circular box. We explore the structural variety at low temperatures as function of the number of particles (N) and the size of the confining box and find a rich variety of patterns that are not observed in unconfined flat space. For a small number of particles [Formula: see text], we identify the zero-temperature minimal energy configurations at a given box size. When the number of particles is large ([Formula: see text]), we distinguish different regimes that appear in route towards close packing configurations as the box size decreases. These regimes are characterized by the increase in the number of branching points and their coordination number. Interestingly, we obtain anisotropic open structures with unexpected variety of rotational symmetries that can be controlled by changing the model parameters, and some of the structures have chirality, in spite of the isotropy of the interactions and of the confining box. For arbitrary temperatures, we employ Monte Carlo integration to obtain the average energy and the configurational entropy of the system, which are then used to construct a phase diagram as function of temperature and box radius. Our findings show that confined core-corona particles can be a suitable system to engineer particles with highly complex internal structure that may serve as building blocks in hierarchical assembly.
通过蒙特卡罗模拟,我们研究了在二维空间中通过各向同性核-冠势相互作用并限制在圆形盒子中的胶体粒子的组装。我们探索了低温下结构的多样性,它是粒子数量(N)和限制盒子大小的函数,并发现了在无限制的平坦空间中未观察到的丰富多样的图案。对于少量粒子[公式:见正文],我们确定了在给定盒子大小下的零温度最小能量构型。当粒子数量很大时([公式:见正文]),随着盒子大小减小,我们区分了在接近密堆积构型的过程中出现的不同区域。这些区域的特征是分支点数量及其配位数的增加。有趣的是,我们获得了具有意想不到的多种旋转对称性的各向异性开放结构,这些对称性可以通过改变模型参数来控制,并且尽管相互作用和限制盒子是各向同性的,但一些结构具有手性。对于任意温度,我们采用蒙特卡罗积分来获得系统的平均能量和构型熵,然后将其用于构建作为温度和盒子半径函数的相图。我们的研究结果表明,受限的核-冠粒子可以是一个合适的系统,用于设计具有高度复杂内部结构的粒子,这些粒子可作为分层组装的构建块。