Suppr超能文献

非随机实验设计中的倾向得分分析:概述及使用R软件的教程

Propensity Score Analysis in Non-Randomized Experimental Designs: An Overview and a Tutorial Using R Software.

作者信息

Kim Hanjoe

机构信息

University of Houston.

出版信息

New Dir Child Adolesc Dev. 2019 Sep;2019(167):65-89. doi: 10.1002/cad.20309. Epub 2019 Sep 11.

Abstract

Propensity score analysis is a statistical method that balances pre-existing differences across treatment conditions achieving a similar condition as randomization and thus, allowing the estimation of causal effects in non-randomized experimental designs. The four stages in propensity score analysis are (1) propensity score estimation, (2) equating or balancing procedures, (3) balance checking, and (4) outcome analysis. Each stage is explained followed by a step-by-step tutorial of applying propensity score analysis to an empirical dataset using R software. Project Achieve concerns grade retention data where the retained and promoted groups were balanced based on 64 baseline covariates. In discussion, some caveats of the propensity score analysis applied to the dataset are discussed with suggestions. A comparison between propensity score analysis and analysis of covariance (ANCOVA) is made and the advantage of using propensity score analysis over ANCOVA is explained. At last, some considerations utilizing propensity score methods in developmental research is discussed.

摘要

倾向得分分析是一种统计方法,它平衡了不同治疗条件下预先存在的差异,实现了与随机化相似的条件,从而能够在非随机实验设计中估计因果效应。倾向得分分析的四个阶段是:(1)倾向得分估计;(2)等同或平衡程序;(3)平衡检查;(4)结果分析。每个阶段都有解释,随后是使用R软件将倾向得分分析应用于实证数据集的逐步教程。“成就项目”涉及留级数据,其中留级组和升级组是根据64个基线协变量进行平衡的。在讨论中,探讨了应用于该数据集的倾向得分分析的一些注意事项并给出了建议。对倾向得分分析和协方差分析(ANCOVA)进行了比较,并解释了使用倾向得分分析相对于ANCOVA的优势。最后,讨论了在发展研究中使用倾向得分方法的一些注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验