Zhang Weiyi, Wei Shen, Wu Yongneng, Wang Yong-Lei, Zhang Miao, Roy Dipankar, Wang Hong, Yuan Jiayin, Zhao Qiang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan , 430074 , China.
Department of Chemistry and Biomolecular Science & Center for Advanced Materials Processing , Clarkson University , 8 Clarkson Avenue , Potsdam , New York 13699 , United States.
ACS Nano. 2019 Sep 24;13(9):10261-10271. doi: 10.1021/acsnano.9b03514. Epub 2019 Sep 13.
High energy/power density, capacitance, and long-life cycles are urgently demanded for energy storage electrodes. Porous carbons as benchmark commercial electrode materials are underscored by their (electro)chemical stability and wide accessibility, yet are often constrained by moderate performances associated with their powdery status. Here controlled vacuum pyrolysis of a poly(ionic liquid) membrane template, advantageous features including good conductivity (132 S cm at 298 K), interconnected hierarchical pores, large specific surface area (1501 m g), and heteroatom doping are realized in a single carbon membrane electrode. The structure synergy at multiple length scales enables large areal capacitances both for a basic aqueous electrolyte (3.1 F cm) and for a symmetric all-solid-state supercapacitor (1.0 F cm), together with superior energy densities (1.72 and 0.14 mW h cm, respectively) without employing a current collector. In addition, theoretical calculations verify a synergistic heteroatom co-doping effect beneficial to the supercapacitive performance. This membrane electrode is scalable and compatible for device fabrication, highlighting the great promise of a poly(ionic liquid) for designing graphitic nanoporous carbon membranes in advanced energy storage.
储能电极迫切需要高能量/功率密度、电容和长寿命循环。多孔碳作为基准商业电极材料,因其(电)化学稳定性和广泛的可及性而受到重视,但往往受到与其粉末状态相关的中等性能的限制。在此,通过对聚(离子液体)膜模板进行可控真空热解,在单一碳膜电极中实现了包括良好导电性(298 K时为132 S cm)、相互连接的分级孔隙、大比表面积(1501 m g)和杂原子掺杂在内的有利特性。多长度尺度的结构协同作用使得在不使用集流体的情况下,对于碱性水系电解质(3.1 F cm)和对称全固态超级电容器(1.0 F cm)都能实现大面积电容,同时具有优异的能量密度(分别为1.72和0.14 mW h cm)。此外,理论计算验证了有利于超级电容性能的协同杂原子共掺杂效应。这种膜电极可扩展且适用于器件制造,突出了聚(离子液体)在设计先进储能中的石墨纳米多孔碳膜方面的巨大潜力。