Suppr超能文献

基于轻量级 API 的构建灵活临床自然语言处理系统的方法。

A Lightweight API-Based Approach for Building Flexible Clinical NLP Systems.

机构信息

Department of Computing and Information Sciences, Utrecht University, Utrecht, Netherlands.

出版信息

J Healthc Eng. 2019 Aug 15;2019:3435609. doi: 10.1155/2019/3435609. eCollection 2019.

Abstract

Natural language processing (NLP) has become essential for secondary use of clinical data. Over the last two decades, many clinical NLP systems were developed in both academia and industry. However, nearly all existing systems are restricted to specific clinical settings mainly because they were developed for and tested with specific datasets, and they often fail to scale up. Therefore, using existing NLP systems for one's own clinical purposes requires substantial resources and long-term time commitments for customization and testing. Moreover, the maintenance is also troublesome and time-consuming. This research presents a lightweight approach for building clinical NLP systems with limited resources. Following the design science research approach, we propose a lightweight architecture which is designed to be composable, extensible, and configurable. It takes NLP as an external component which can be accessed independently and orchestrated in a pipeline via web APIs. To validate its feasibility, we developed a web-based prototype for clinical concept extraction with six well-known NLP APIs and evaluated it on three clinical datasets. In comparison with available benchmarks for the datasets, three high 1 scores (0.861, 0.724, and 0.805) were obtained from the evaluation. It also gained a low 1 score (0.373) on one of the tests, which probably is due to the small size of the test dataset. The development and evaluation of the prototype demonstrates that our approach has a great potential for building effective clinical NLP systems with limited resources.

摘要

自然语言处理(NLP)已成为二次利用临床数据的关键。在过去的二十年中,学术界和工业界都开发了许多临床 NLP 系统。然而,几乎所有现有的系统都仅限于特定的临床环境,主要是因为它们是为特定的数据集开发和测试的,而且它们往往无法扩展。因此,为了自己的临床目的使用现有的 NLP 系统需要大量的资源和长期的时间投入来进行定制和测试。此外,维护也很麻烦且耗时。本研究提出了一种使用有限资源构建临床 NLP 系统的轻量级方法。按照设计科学研究方法,我们提出了一种轻量级架构,旨在实现可组合、可扩展和可配置。它将 NLP 作为一个外部组件,可以通过 Web API 独立访问并在管道中进行编排。为了验证其可行性,我们使用六个著名的 NLP API 为临床概念提取开发了一个基于 Web 的原型,并在三个临床数据集上对其进行了评估。与数据集的现有基准相比,该评估获得了三个高分(0.861、0.724 和 0.805)。在其中一项测试中,它也获得了一个较低的分数(0.373),这可能是由于测试数据集较小。原型的开发和评估表明,我们的方法在使用有限资源构建有效的临床 NLP 系统方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56a5/6714318/120ba3859529/JHE2019-3435609.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验