Wellman Center for Photomedicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States.
Department of Surgery and Department of Pathology, Perlmutter Cancer Center , New York University Langone Health , New York , New York 10016 , United States.
Nano Lett. 2019 Nov 13;19(11):7573-7587. doi: 10.1021/acs.nanolett.9b00859. Epub 2019 Oct 4.
Despite untiring efforts to develop therapies for pancreatic ductal adenocarcinoma (PDAC), survival statistics remain dismal, necessitating distinct approaches. Photodynamic priming (PDP), which improves drug delivery and combination regimens, as well as tumor photodestruction are key attributes of photodynamic therapy (PDT), making it a distinctive clinical option for PDAC. Localized, high-payload nanomedicine-assisted delivery of photosensitizers (PSs), with molecular specificity and controlled photoactivation, thus becomes critical in order to reduce collateral toxicity during more expansive photodynamic activation procedures with curative intent. As such, targeted photoactivable lipid-based nanomedicines are an ideal candidate but have failed to provide greater than two-fold cancer cell selectivity, if at all, due to their extensive multivariant physical, optical, and chemical complexity. Here, we report (1) a systematic multivariant tuning approach to engineer (Cet, anti-EGFR mAb) photoimmunonanoconjugates (PINs), and (2) stroma-rich heterotypic PDAC and models incorporating patient-derived pancreatic cancer-associated fibroblasts (PCAFs) that recapitulate the desmoplasia observed in the clinic. These offer a comprehensive, disease-specific framework for the development of Cet-PINs. Specificity-tuning of the PINs, in terms of PS lipid anchoring, electrostatic modulation, Cet orientation, and Cet surface densities, achieved ∼16-fold binding specificities and rapid penetration of the heterotypic organoids within 1 h, thereby providing a ∼16-fold enhancement in molecular targeted NIR photodestruction. As a demonstration of their inherent amenability for multifunctionality, encapsulation of high payloads of gemcitabine hydrochloride, 5-fluorouracil, and oxaliplatin within the Cet-PINs further improved their antitumor efficacy in the heterotypic organoids. In heterotypic desmoplastic tumors, the Cet-PINs efficiently penetrated up to 470 μm away from blood vessels, and photodynamic activation resulted in substantial tumor necrosis, which was not elicited in T47D tumors (low EGFR) or when using untargeted constructs in both tumor types. Photodynamic activation of the Cet-PINs in the heterotypic desmoplastic tumors resulted in collagen photomodulation, with a 1.5-fold reduction in collagen density, suggesting that PDP may also hold potential for conquering desmoplasia. The safety profile of photodynamic activation of the Cet-PINs was also substantially improved, as compared to the untargeted constructs. While treatment using the Cet-PINs did not cause any detriment to the mice's health or to healthy proximal tissue, photodynamic activation of untargeted constructs induced severe acute cachexia and weight loss in all treated mice, with substantial peripheral skin necrosis, muscle necrosis, and bowel perforation. This study is the first report demonstrating the true value of molecular targeting for NIR-activable PINs. These constructs integrate high payload delivery, efficient photodestruction, molecular precision, and collagen photomodulation in desmoplastic PDAC tumors in a single treatment using a single construct. Such combined PIN platforms and heterocellular models open up an array of further multiplexed combination therapies to synergistically control desmoplastic tumor progression and extend PDAC patient survival.
尽管人们一直在不懈努力开发用于胰腺导管腺癌(PDAC)的疗法,但生存统计数据仍然不容乐观,因此需要采取不同的方法。光动力引发(PDP)可改善药物递送和联合方案,并可进行肿瘤光破坏,这是光动力疗法(PDT)的关键属性,使其成为 PDAC 的独特临床选择。局部、高载药纳米医学辅助递送至敏剂(PSs),具有分子特异性和受控光激活,因此在更广泛的具有治愈意图的光动力激活过程中减少附带毒性变得至关重要。因此,靶向光激活的基于脂质的纳米药物是理想的候选药物,但由于其广泛的多变量物理、光学和化学复杂性,即使有,也未能提供超过两倍的癌细胞选择性。在这里,我们报告了(1)一种系统的多变量调整方法来设计(Cet、抗 EGFR mAb)光免疫纳米偶联物(PINs),以及(2)富含基质的异质 PDAC 和包含患者来源的胰腺癌相关成纤维细胞(PCAFs)的模型,这些模型再现了临床上观察到的细胞外基质。这些为 Cet-PINs 的开发提供了一个全面的、特定于疾病的框架。通过调整 PINs 的 PS 脂质锚定、静电调制、Cet 取向和 Cet 表面密度等特异性,实现了约 16 倍的结合特异性,并且异质类器官在 1 小时内快速穿透,从而使分子靶向近红外光破坏增强了约 16 倍。作为其固有多功能性的证明,将高载量的盐酸吉西他滨、5-氟尿嘧啶和奥沙利铂封装在 Cet-PINs 中进一步提高了它们在异质类器官中的抗肿瘤功效。在异质纤维增生性肿瘤中,Cet-PINs 可有效地穿透距离血管 470μm 的距离,光动力激活导致大量肿瘤坏死,而在 T47D 肿瘤(低 EGFR)或在两种肿瘤类型中使用非靶向构建体时则不会引发。异质纤维增生性肿瘤中 Cet-PINs 的光动力激活导致胶原蛋白光调制,胶原蛋白密度降低 1.5 倍,表明 PDP 也可能有潜力克服细胞外基质。与非靶向构建体相比,Cet-PINs 的光动力激活的安全性也得到了显著改善。虽然使用 Cet-PINs 治疗不会对老鼠的健康或健康的近端组织造成任何损害,但非靶向构建体的光动力激活会导致所有接受治疗的老鼠出现严重的急性恶病质和体重减轻,并且会出现大量的外周皮肤坏死、肌肉坏死和肠穿孔。这项研究首次证明了用于近红外激活的 PINs 的分子靶向的真正价值。这些构建体在单个治疗中使用单个构建体将高载药递送、高效光破坏、分子精度和胶原蛋白光调制集成到纤维增生性 PDAC 肿瘤中。这种组合的 PIN 平台和异质细胞模型为进一步的多种组合疗法打开了一系列可能性,以协同控制纤维增生性肿瘤的进展并延长 PDAC 患者的生存时间。