Suppr超能文献

参与罗伊氏乳杆菌半乳糖寡糖代谢的基因及其在胃肠道中的生态作用。

Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.

机构信息

Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA.

Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01788-19. Print 2019 Nov 15.

Abstract

Strains of are commonly used as probiotics due to their demonstrated therapeutic properties. Many strains of also utilize the prebiotic galactooligosaccharide (GOS), providing a basis for formulating synergistic synbiotics that could enhance growth or persistence of this organism In this study, in-frame deletion mutants were constructed to characterize the molecular basis of GOS utilization in ATCC PTA-6475. Results suggested that GOS transport relies on a permease encoded by , while a second unidentified protein may function as a galactoside transporter. Two β-galactosidases, encoded by and , sequentially degrade GOS oligosaccharides and GOS disaccharides, respectively. Inactivation of and resulted in impaired growth in the presence of GOS and lactose. competition experiments between the wild-type and strains revealed that the GOS-utilizing genes conferred a selective advantage in media with GOS but not glucose. GOS also provided an advantage to the wild-type strain in experiments in gnotobiotic mice but only on a purified, no sucrose diet. Differences in cell numbers between GOS-fed mice and mice that did not receive GOS were small, suggesting that carbohydrates other than GOS were sufficient to support growth. On a complex diet, the strain was outcompeted by the wild-type strain in gnotobiotic mice, suggesting that and are involved in the utilization of alternative dietary carbohydrates. Indeed, the growth of the mutants was impaired in raffinose and stachyose, which are common in plants, demonstrating that α-galactosides may constitute alternate substrates of the GOS pathway. This study shows that genes in encode hydrolases and transporters that are necessary for the metabolism of GOS, as well as α-galactoside substrates. Coculture experiments with the wild-type strain and a mutant clearly demonstrated that GOS utilization confers a growth advantage in medium containing GOS as the sole carbohydrate source. However, the wild-type strain also outcompeted the mutant in germfree mice, suggesting that GOS genes in also provide a basis for utilization of other carbohydrates, including α-galactosides, ordinarily present in the diets of humans and other animals. Collectively, our work provides information on the metabolism of in its natural niche in the gut and may provide a basis for the development of synbiotic strategies.

摘要

由于其治疗特性,被广泛用作益生菌。许多也利用了益生元半乳糖寡糖(GOS),这为制定协同共生体提供了基础,共生体可以增强该生物体的生长或持久性。在这项研究中,构建了框内缺失突变体,以表征 ATCC PTA-6475 中 GOS 利用的分子基础。结果表明,GOS 运输依赖于由编码的渗透酶,而第二个未识别的蛋白质可能作为半乳糖苷转运蛋白发挥作用。两种β-半乳糖苷酶,分别由编码和,依次降解 GOS 低聚糖和 GOS 二糖。失活和导致在存在 GOS 和乳糖时生长受损。野生型和菌株之间的竞争实验表明,GOS 利用基因在含有 GOS 但不含葡萄糖的培养基中赋予了选择性优势。GOS 也为野生型菌株在无菌小鼠中的实验提供了优势,但仅在纯化的、不含蔗糖的饮食中。GOS 喂养的小鼠和未接受 GOS 的小鼠之间的细胞数量差异很小,表明除 GOS 以外的碳水化合物足以支持生长。在复杂的饮食中,在无菌小鼠中,菌株被野生型菌株竞争淘汰,表明和参与了替代膳食碳水化合物的利用。事实上,突变体的生长在棉子糖和水苏糖中受到损害,棉子糖和水苏糖是植物中常见的物质,表明α-半乳糖苷可能构成 GOS 途径的替代底物。这项研究表明,编码水解酶和转运蛋白,这些酶和蛋白对于 GOS 的代谢以及α-半乳糖苷底物是必需的。与野生型菌株和突变体的共培养实验清楚地表明,在仅含有 GOS 作为唯一碳源的培养基中,GOS 的利用赋予了生长优势。然而,野生型菌株在无菌小鼠中也竞争淘汰了突变体,表明中的 GOS 基因也为利用其他碳水化合物提供了基础,包括通常存在于人类和其他动物饮食中的α-半乳糖苷。总的来说,我们的工作提供了关于在肠道其自然生态位中代谢的信息,并且可能为共生体策略的发展提供了基础。

相似文献

1
Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01788-19. Print 2019 Nov 15.
2
Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
Int J Food Microbiol. 2018 May 2;272:12-21. doi: 10.1016/j.ijfoodmicro.2018.02.021. Epub 2018 Feb 27.
4
Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17785-90. doi: 10.1073/pnas.1114152108. Epub 2011 Oct 17.
5
Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.
Food Microbiol. 2013 Dec;36(2):432-9. doi: 10.1016/j.fm.2013.07.011. Epub 2013 Aug 1.

引用本文的文献

1
Zinc Alleviates Gut Barrier Dysfunction by Promoting the Methylation of AKT.
Adv Sci (Weinh). 2025 Sep;12(33):e08280. doi: 10.1002/advs.202508280. Epub 2025 Jul 11.
2
Prebiotic Effects of α- and β-Galactooligosaccharides: The Structure-Function Relation.
Molecules. 2025 Feb 9;30(4):803. doi: 10.3390/molecules30040803.
3
The synergistic role of gut microbiota and RNA in metabolic diseases: mechanisms and therapeutic insights.
Front Microbiol. 2025 Jan 29;16:1504395. doi: 10.3389/fmicb.2025.1504395. eCollection 2025.
4
Synergistic . complementary synbiotics: the complexity of discriminating synbiotic concepts using a exemplary study.
Microbiome Res Rep. 2024 Sep 4;3(4):46. doi: 10.20517/mrr.2024.48. eCollection 2024.
6
Prebiotic utilisation provides a competitive advantage , but is not reflected by an increased intestinal fitness.
Gut Microbes. 2024 Jan-Dec;16(1):2338946. doi: 10.1080/19490976.2024.2338946. Epub 2024 Apr 24.
9
Tumorigenesis in Inflammatory Bowel Disease: Microbiota-Environment Interconnections.
Cancers (Basel). 2023 Jun 15;15(12):3200. doi: 10.3390/cancers15123200.
10
The role of potential probiotic strains in various intestinal diseases: New roles for an old player.
Front Microbiol. 2023 Feb 2;14:1095555. doi: 10.3389/fmicb.2023.1095555. eCollection 2023.

本文引用的文献

2
An enhanced Lactobacillus reuteri biofilm formulation that increases protection against experimental necrotizing enterocolitis.
Am J Physiol Gastrointest Liver Physiol. 2018 Sep 1;315(3):G408-G419. doi: 10.1152/ajpgi.00078.2018. Epub 2018 May 31.
3
Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
Int J Food Microbiol. 2018 May 2;272:12-21. doi: 10.1016/j.ijfoodmicro.2018.02.021. Epub 2018 Feb 27.
5
Synbiotics for Improved Human Health: Recent Developments, Challenges, and Opportunities.
Annu Rev Food Sci Technol. 2018 Mar 25;9:451-479. doi: 10.1146/annurev-food-030117-012757. Epub 2018 Jan 18.
6
Crying Time and RORγ/FOXP3 Expression in Lactobacillus reuteri DSM17938-Treated Infants with Colic: A Randomized Trial.
J Pediatr. 2018 Jan;192:171-177.e1. doi: 10.1016/j.jpeds.2017.08.062. Epub 2017 Sep 29.
7
induces gut intraepithelial CD4CD8αα T cells.
Science. 2017 Aug 25;357(6353):806-810. doi: 10.1126/science.aah5825. Epub 2017 Aug 3.
8
Lifestyles in transition: evolution and natural history of the genus Lactobacillus.
FEMS Microbiol Rev. 2017 Aug 1;41(Supp_1):S27-S48. doi: 10.1093/femsre/fux030.
9
Prebiotic Galactooligosaccharide Metabolism by Probiotic Lactobacilli and Bifidobacteria.
J Agric Food Chem. 2017 May 24;65(20):4184-4192. doi: 10.1021/acs.jafc.7b00851. Epub 2017 May 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验