Suppr超能文献

通过联合辐射和细菌膜包覆纳米粒子开发原位癌症疫苗。

Development of an In Situ Cancer Vaccine via Combinational Radiation and Bacterial-Membrane-Coated Nanoparticles.

机构信息

Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA.

Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA.

出版信息

Adv Mater. 2019 Oct;31(43):e1902626. doi: 10.1002/adma.201902626. Epub 2019 Sep 16.

Abstract

Neoantigens induced by random mutations and specific to an individual's cancer are the most important tumor antigens recognized by T cells. Among immunologically "cold" tumors, limited recognition of tumor neoantigens results in the absence of a de novo antitumor immune response. These "cold" tumors present a clinical challenge as they are poorly responsive to most immunotherapies, including immune checkpoint inhibitors (ICIs). Radiation therapy (RT) can enhance immune recognition of "cold" tumors, resulting in a more diversified antitumor T-cell response, yet RT alone rarely results in a systemic antitumor immune response. Therefore, a multifunctional bacterial membrane-coated nanoparticle (BNP) composed of an immune activating PC7A/CpG polyplex core coated with bacterial membrane and imide groups to enhance antigen retrieval is developed. This BNP can capture cancer neoantigens following RT, enhance their uptake in dendritic cells (DCs), and facilitate their cross presentation to stimulate an antitumor T-cell response. In mice bearing syngeneic melanoma or neuroblastoma, treatment with BNP+RT results in activation of DCs and effector T cells, marked tumor regression, and tumor-specific antitumor immune memory. This BNP facilitates in situ immune recognition of a radiated tumor, enabling a novel personalized approach to cancer immunotherapy using off-the-shelf therapeutics.

摘要

由随机突变诱导并特定于个体癌症的新抗原是 T 细胞识别的最重要的肿瘤抗原。在免疫“冷”肿瘤中,对肿瘤新抗原的有限识别导致缺乏新的抗肿瘤免疫反应。这些“冷”肿瘤带来了临床挑战,因为它们对大多数免疫疗法(包括免疫检查点抑制剂 (ICI))反应不佳。放射治疗 (RT) 可以增强对“冷”肿瘤的免疫识别,导致更具多样性的抗肿瘤 T 细胞反应,但 RT 本身很少导致全身性抗肿瘤免疫反应。因此,开发了一种由免疫激活 PC7A/CpG 多聚物核心组成的多功能细菌膜包裹的纳米颗粒 (BNP),该核心被细菌膜和亚胺基团包裹以增强抗原回收。这种 BNP 可以在 RT 后捕获癌症新抗原,增强树突状细胞 (DC) 的摄取,并促进其交叉呈递以刺激抗肿瘤 T 细胞反应。在携带同源黑色素瘤或神经母细胞瘤的小鼠中,BNP+RT 治疗可激活 DC 和效应 T 细胞,显著消退肿瘤,并产生肿瘤特异性抗肿瘤免疫记忆。该 BNP 促进了辐射肿瘤的原位免疫识别,为使用现成治疗药物的癌症免疫治疗提供了一种新的个性化方法。

相似文献

1
Development of an In Situ Cancer Vaccine via Combinational Radiation and Bacterial-Membrane-Coated Nanoparticles.
Adv Mater. 2019 Oct;31(43):e1902626. doi: 10.1002/adma.201902626. Epub 2019 Sep 16.
3
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
Acc Chem Res. 2020 Sep 15;53(9):1739-1748. doi: 10.1021/acs.accounts.0c00313. Epub 2020 Aug 18.
6
The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide.
Theranostics. 2018 Feb 12;8(6):1723-1739. doi: 10.7150/thno.22056. eCollection 2018.
7
Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
J Exp Clin Cancer Res. 2022 Apr 8;41(1):132. doi: 10.1186/s13046-022-02307-3.
10
Vaccination Following Intratumoral Injection of IL2 and Poly-l-lysine/Iron Oxide/CpG Nanoparticles to a Radiated Tumor Site.
ACS Nano. 2023 Jun 13;17(11):10236-10251. doi: 10.1021/acsnano.3c00418. Epub 2023 May 22.

引用本文的文献

1
Novel bioengineering strategies for drug delivery systems.
Appl Mater Today. 2023 Aug;33. doi: 10.1016/j.apmt.2023.101834. Epub 2023 Jun 9.
2
Resynthesis of synthetic biology techniques: combining engineered bacteria with other antitumour therapies.
Front Microbiol. 2025 Jul 28;16:1545334. doi: 10.3389/fmicb.2025.1545334. eCollection 2025.
3
Biomaterials nanoplatform-based tumor vaccines for immunotherapy.
Bioact Mater. 2025 Jun 30;51:924-961. doi: 10.1016/j.bioactmat.2025.06.038. eCollection 2025 Sep.
5
X-ray-responsive dissolving microneedles mediate STING pathway activation to potentiate cutaneous melanoma radio-immunotherapy.
Theranostics. 2025 Jun 9;15(14):6919-6937. doi: 10.7150/thno.110841. eCollection 2025.
6
Engineered expressing anti-PD-L1/IL-15 immunocytokine induces and activates specific antitumor immunity.
J Immunother Cancer. 2025 May 21;13(5):e010118. doi: 10.1136/jitc-2024-010118.
7
Improving tumor treatment: Cell membrane-coated nanoparticles for targeted therapies.
Mater Today Bio. 2025 Apr 23;32:101716. doi: 10.1016/j.mtbio.2025.101716. eCollection 2025 Jun.
8
Multiple radiations and its effect on biological system - a review on and mechanisms.
Ann Med. 2025 Dec;57(1):2486595. doi: 10.1080/07853890.2025.2486595. Epub 2025 Apr 12.
9
Reprogramming of Glucose Metabolism by Nanocarriers to Improve Cancer Immunotherapy: Recent Advances and Applications.
Int J Nanomedicine. 2025 Apr 5;20:4201-4234. doi: 10.2147/IJN.S513207. eCollection 2025.
10
Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation.
ACS Nano. 2025 May 6;19(17):16204-16223. doi: 10.1021/acsnano.4c15765. Epub 2025 Apr 9.

本文引用的文献

1
Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy.
J Control Release. 2019 Apr 28;300:154-160. doi: 10.1016/j.jconrel.2019.02.036. Epub 2019 Mar 4.
2
Radiotherapy induces responses of lung cancer to CTLA-4 blockade.
Nat Med. 2018 Dec;24(12):1845-1851. doi: 10.1038/s41591-018-0232-2. Epub 2018 Nov 5.
3
SnapShot: CGAS-STING Signaling.
Cell. 2018 Mar 22;173(1):276-276.e1. doi: 10.1016/j.cell.2018.03.015.
4
Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer.
Nanomedicine (Lond). 2017 Dec;12(23):2693-2706. doi: 10.2217/nnm-2017-0254. Epub 2017 Nov 3.
6
Transcriptional-mediated effects of radiation on the expression of immune susceptibility markers in melanoma.
Radiother Oncol. 2017 Sep;124(3):418-426. doi: 10.1016/j.radonc.2017.08.016. Epub 2017 Sep 8.
7
pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.
Biomaterials. 2017 Oct;141:272-283. doi: 10.1016/j.biomaterials.2017.07.001. Epub 2017 Jul 3.
8
Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy.
Nat Nanotechnol. 2017 Sep;12(9):877-882. doi: 10.1038/nnano.2017.113. Epub 2017 Jun 26.
9
Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook.
Adv Mater. 2017 Aug;29(29). doi: 10.1002/adma.201606036. Epub 2017 May 26.
10
Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy.
Cancer Cell. 2017 May 8;31(5):711-723.e4. doi: 10.1016/j.ccell.2017.04.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验