Suppr超能文献

使用 SNMFNet 分类器进行心音分类。

Heart sound classification using the SNMFNet classifier.

机构信息

School of Automation, Guangdong University of Technology, Guangzhou, People's Republic of China. Guangdong Key Laboratory of Modern Control Technology, Guangdong Institute of Intelligent Manufacturing, Guangzhou, People's Republic of China.

出版信息

Physiol Meas. 2019 Oct 30;40(10):105003. doi: 10.1088/1361-6579/ab45c8.

Abstract

OBJECTIVE

Heart sound classification still suffers from the challenges involved in achieving high accuracy in the case of small samples. Dimension reduction attempts to extract low-dimensional features with more discriminability from high-dimensional spaces or raw data, and is popular in learning predictive models that target small sample problems. However, it can also be harmful to classification, because any reduction has the potential to lose information containing category attributes.

APPROACH

For this, a novel SNMFNet classifier is designed to directly associate the dimension reduction process with the classification procedure used for promoting feature dimension reduction to follow the approach that is beneficial for classification, thus making the low-dimensional features more distinguishable and addressing the challenge facing heart sound classification in small samples.

MAIN RESULTS

We evaluated our method and representative methods using a public heart sound dataset. The experimental results demonstrate that our method outperforms all comparative models with an obvious improvement in small samples. Furthermore, even if used with relatively sufficient samples, our method performs at least as well as the baseline that uses the same high-dimensional features.

SIGNIFICANCE

The proposed SNMFNet classifier significantly to improves the small sample problem in heart sound classification.

摘要

目的

心音分类仍然面临着在小样本情况下实现高精度的挑战。降维试图从高维空间或原始数据中提取具有更高可辨别性的低维特征,并且在学习针对小样本问题的预测模型中很受欢迎。然而,它也可能对分类造成危害,因为任何降维都有可能丢失包含类别属性的信息。

方法

为此,设计了一种新颖的 SNMFNet 分类器,将降维过程直接与分类过程相关联,用于促进特征降维的方法遵循有利于分类的方法,从而使低维特征更具可区分性,并解决小样本中心音分类面临的挑战。

主要结果

我们使用公共心音数据集评估了我们的方法和有代表性的方法。实验结果表明,我们的方法在小样本中优于所有比较模型,具有明显的改进。此外,即使使用相对充足的样本,我们的方法的性能至少与使用相同高维特征的基线一样好。

意义

所提出的 SNMFNet 分类器显著改善了心音分类中小样本的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验